The Detection of Glucose for the Carbon Paste Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao ( 廖國翔 ), Chih-Ying Wu ( 巫致穎 ), Hau Lin.

Slides:



Advertisements
Similar presentations
Capability of Immobilisation techniques and detection of Ab-Ag interactions by Eyad Hamad November 2010.
Advertisements

Hydrogen Peroxide Detection Using Biogenic and Synthetic MnO 2 Shu Feng, Jim Nurmi, Paul Tratynek Satya Chinni, Brad Tebo Department of Environmental and.
New electrode materials for H 2 O 2 New electrode materials for H 2 O 2 based sensors and biosensors Francesco Ricci 1, Carla Gonçalves 2, Giuseppe Palleschi.
Abstract Sibley School of Mechanical and Aerospace Engineering, Cornell University Researchers from Cornell University and the Cornell Lab of Ornithology.
Fabrication of a Microelectrode Array Biosensor Based on a Modified Enzyme-Chitosan Biocomposite Lorenzo D’Amico October 1, 2008.
Enhanced Electrochemical Reduction of Hydrogen Peroxide at Surfactant/Salt Modified Electrodes Laura Gonzalez-Macia 1, Malcolm R. Smyth 2 and Anthony J.
Dr. Marc Madou, UCI, Winter 2012 Class V Potentiometric and Amperometric Sensors (I) Electrochemistry MAE-295.
Determination of Partition Coefficient of NAD + on Nafion 117 membranes Importance: Partitioning process affects actual NAD + and NADH concentrations,
Application: A novel, non-destructive method which provides characterization of the three-phase interface in both catalyst and diffusion layers, between.
The Detection of Hydrogen Peroxide and Glucose for the Electrode Modified with Ferrocene Yi-Sheng Wang ( 汪乙生 ), Ting-Li Lin ( 林庭立 ), Hau Lin ( 林浩 ) Department.
Dynamics and Steady States of Two Chemostats in Series Due to the contamination of the biochemical waste, the techniques of waste treatment have been applied.
Ionic Liquids: A New Class of Sensing Materials Linlin Zhao Bioanalytical Chem, Spring 2007, UConn.
基于纳米金和硫堇固定酶 的过氧化氢生物传感器 答辩人:陈贤光( 03 应化) 指导老师:童叶翔 教授 邹小勇 教授 广州.
Carbon Nanotubes as Biosensors ME 695 Yang 11/30/2004.
IC Controls Quality Water Solutions for pH R1.0 © 2004 IC CONTROLS pH / ORP Conductivity Dissolved Oxygen Chlorine Standards An Overview.
Introducti on Objectiv e Experimenta l section Results and discussion Conclusio ns.
An Analysis of Dynamics of the Prey-Predator Interaction in a Chemostat Wen-Ke Su ( 蘇文柯 ), Chung-Min Lien ( 連崇閔 ), Hau Lin ( 林浩 ) Department of Chemical.
Preparation of the Carbon Paste Electrode Modified with Ferrocene and Its Applications to Detection of Hydrogen Peroxide and Glucose Yi-Sheng Wang ( 汪乙生.
Fig. 1 The heating ways for DSC (a) non-isothermal; (b) isothermal analyses (a)(b) Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding.
Immobilizing Enzymes. What Is Enzyme Immobilization? So far… – Batch/Continuous cultures – Industrial enzyme production If you make enzymes you can save.
Reporter : Chang-Fu Lain Professor: Cheng-Ho Chen Date : 6/11.
A Study of the Effect of Operating Potential on Detection of Hydrogen Peroxide for the Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao.
Advisor : Ru-Li Lin Advisee :Shih-Min Chen Southern Taiwan University of Science and Technology, Department of Mechanical Engineering, Tainan, TAIWAN Date.
NOVEL NON-CONDUCTING FILMSFOR INTERFERENCE-FREE ELECTROCHEMICAL SENSORS M. BADEA a, A. CURULLI b*, G. PALLESCHI a, S. KACIULIS c, A. MEZZI c a Università.
Professor: Cheng-Ho Chen Student: Jing-Mei Wang Reporting date: 2015 / 05 / 06.
Sample 2 inlet Buffer inlet Pneumatic micropump The vitamin C filtration Micro-valve outlet Sample 1 inlet MIP morphine sensing electrode Pt Ag Multiple.
A Study of Statistical Analysis of the Main Effects and Interaction Effects of Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with.
The Optimum Operating Conditions for Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with Ferrocene Pao-Tsai Kuo ( 郭寶財 ), Chung-Min.
An Analysis of the Effects of Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with Ferrocene Pao-Tsai Kuo ( 郭寶財 ), Chung-Min Lien.
The Operating Potential on the Sensitivity of Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with Ferrocene Pao-Tsai Kuo ( 郭寶財.
Microwave Assisted ZnO Nanorod Growth for Biosensing This material is based upon work supported by the National Science Foundation.
Steady States and Dynamic Behavior of a Chemostat Shan-Cheng Chyou ( 仇善誠 ), Chung-Min Lien ( 連崇閔 ), Hau Lin ( 林浩 ) Department of Chemical and Materials.
The Effect of Stirring Rate on the Detection of Hydrogen Peroxide for Carbon Paste Electrode Modified with Meldola’s Blue Chi-Wen Lo ( 羅濟玟 ), Chih-Ying.
An Analysis of Variance of Detection of Hydrogen Peroxide for Carbon Paste Electrode Modified with Copper Hexacyanoferrate Chia-Cheng Hsiao ( 蕭佳政 ), Chih-Ying.
Biosensors and Carbon Nanotubes
Reporter: Wen-Cheng Lin Teacher:Wei-Tung Liao. Outline Introduction Materials Experimental Results and discussion Conclusions.
The Operating Conditions for the Sensitivity of Detection of Hydrogen Peroxide for the Electrode Modified with Copper Hexacyanoferrate Chia-Cheng Hsiao(
Experiment 5. A Rate Law and Activation Energy
Application of the Screen Printed Planar Electrode Modified with Ruthenium Hexacyanoferrate to Glucose Biosensor Kuo-Hsiang Liao( 廖國翔 ), Chung-Min Lien(
Professor: Cheng-Ho Chen Student: Huang-Chi Hu Reporting date: 2015 / 03 / 25 1.
Correlation between Nyquist plots for: (A) bare GCE and (B) SWCNT+PEI+HRP modified GCE in 10 mM K 3 [Fe(CN) 6 ] + K 4 [Fe(CN) 6 ], in phosphate buffer.
Study on the phase change cement based materials Min Li Southeast University, China Southeast University th International Conference on.
 Introduction  Literature Review  Motivation  Experimental  Results and Discussion  Conclusion  Future work  References 2.
The Effect of Ratio of Meldola’s Blue to Carbon Powders and Carbon Paste on Detection of Hydrogen Peroxide for the Carbon Paste Electrode Modified with.
The Effect of the Dilution Rate on the Dynamics of a Chemostat Chung-Te Liu ( 劉崇德 ), Chung-Min Lien ( 連崇閔 ), Hau Lin ( 林浩 ) Department of Chemical and.
S YNTHESIS AND CHARACTERIZATION OF C ROSS - LINKED CELLULASE ENZYME AGGREGATES (CLEA S ) BY ETHANOL AND ACETONE DESOLVATION TECHNIQUE Presentation by Jagdish.
Reporter:Wen-Cheng Lin Teacher:Wei-Tung Liao. Outline Introduction Materials Experimental Results and discussion Conclusions.
BIOFABRICATION OF MEA GLUCOSE SENSORS Dry in air Ready for in vitro glucose detection (B) Chitosan biopolymer is electrodeposited on target electrode sites;
The pH on the Sensitivity of Detection of Hydrogen Peroxide for the Small Electrode Modified with Meldola’s Blue Chi-Wen Lo ( 羅濟玟 ), Chung-Min Lien ( 連崇閔.
Reporter : Shao-Fung Chiu Advisor : Cheng-Ho Chen Date : 2015/12/22 1.
Enhancement of Hydrogen Storage Capacity of Zeolite- Templated Carbons by Chemical Activation Muthukrishnan. I Sevilla, M.; Alam, N.; and Mokaya,
The pH on the Detection of Hydrogen Peroxide for Electrode Modified with Chromium Hexacyanoferrate Chen-Hsun Hu ( 胡真熏 ), Ting-Li Lin ( 林庭立 ), Hau Lin (
Student : Pei-Tzu Chiu Advisor : Cheng-Ho Chen Date : Date :
Highly transparent solution processed In-Ga-Zn oxide thin films 指導教授 : 林克默博士 學生 : 董祐成 日期 :99/08/16 Y. Wang S. W. Liu X. W. Sun J. L. Zhao G. K. L. Goh.
The Detection of Hydrogen Peroxide and Glucose for the Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao ( 廖國翔 ), Chung-Min Lien ( 連崇閔.
PH meter Bushra mubarak. pH pH is defined as the negative logarithm of the hydrogen ion activity aH. Unit of measure which describes the degree of acidity.
The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property Shuai Wu a,d, ZhuoyaoHuang a, JianhuiYue a,d, DiLiu a,c,
1 Advisor : Cheng-Hsin Chuang Advisee : Hsun-pei Wu Department of Mechanical Engineering & Institute of Nanotechnology, Southern Taiwan University, Tainan,
A Study of Carbon Paste Electrode Modified with Platinum Particles and Ferrocene and Its Application to Glucose Biosensor Yi-Sheng Wang ( 汪乙生 ), Ting-Li.
枣庄学院化学化工与材料科学学院 Preparation of Solution. 枣庄学院化学化工与材料科学学院 1. Grasp the basic Method and Operation of Preparing Solution 2. Study the Method of Use about.
Effect of pH on Adsorption of Lead from Water onto Tree Fern Hao-Ming Hu a, Chih-Chien Tu a, Yuh-Shan Ho b# * and Wen-Ta Chiu a a Taipei Medical University.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Liquid Metal Ink Enabled Rapid Prototyping of Electrochemical Sensor for Wireless.
Introduction Lei, Yang; Luo, Ning. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale,
Abstract Results Current Time PO4 Addition Points Development of a Phosphate Biosensor for Soil & Groundwater Serkan Akar*, Vekalet Tek*, Adam Bange#,
Analytical Laboratory II
Electrochemistry MAE-212
RESULTS AND DISCUSSION
Chen-Hsun Hu (胡真熏) , Chih-Ying Wu (巫致穎) , Hau Lin (林浩)
NiO2 mediator in catalytic oxidation of 2-propanol on glassy carbon
نانو زیست حسگرها (1) اصول عملکرد و طبقه بندی
Presentation transcript:

The Detection of Glucose for the Carbon Paste Electrode Modified with Ruthenium Hexacyanoferrate Kuo-Hsiang Liao ( 廖國翔 ), Chih-Ying Wu ( 巫致穎 ), Hau Lin ( 林浩 ) Department of Chemical and Materials Engineering, Southern Taiwan University 南台科技大學化學工程與材料工程系 Both the hydrogen peroxide sensor and glucose biosensor are important research subjects. A study was conducted to use the ruthenium hexacyanoferrate( Ⅱ ) to modify the carbon paste electrode which was used as the working electrode to detect the responding current of reduction of hydrogen peroxide in the PBS buffer solution( pH = 7.4 )and the sensitivity of detection of hydrogen peroxide was determined from the responding current and consequently, the concentration of the glucose could be determined. The TB (Time Base) graphs for different operating potentials, stirring rates, and pH values were plotted to determine the optimum operating conditions. The results showed that the responding current for the carbon paste electrode modified with the ruthenium hexacyanoferrate( Ⅱ ) was elevated significantly. At 30 ℃, -0.2V operating potential, 600rpm stirring rate and in 0.05 M PBS buffer solution( pH = 7.4 ), when the carbon paste electrode was modified with the ruthenium hexacyanoferrate( Ⅱ ) [ruthenium hexacyanoferrate( Ⅱ ) : graphite carbon powders = 3 : 7 ( weight ratio )], the detection limit was 0.02 mM H 2 O 2, the linear range was 0.02 ~ 2.7 mM H 2 O 2, R 2 =0.9996, and the sensitivity was μA/cm 2 ּmM H 2 O 2. For the glucose biosensor, the detection limit was 0.02 mM C 6 H 12 O 6, the linear range was 0.02~2.56 mM C 6 H 12 O 6 (R 2 =0.999), and the sensitivity was 4.11 µA/cm 2 . mM C 6 H 12 O 6. The optimum operating conditions are -200mV operating potential, 600rpm stirring rate and in 0.05 M PBS buffer solution( pH = 7.4 ) [ruthenium hexacyanoferrate( Ⅱ ) : graphite carbon powders = 3 : 7 ( weight ratio )]. INTRODUCTION : A study was conducted to use the ruthenium hexacyanoferrate( Ⅱ ) to modify the carbon paste electrode which was used as the working electrodes to detect the responding current of reduction of hydrogen peroxide in the phosphate buffer solution(PBS) and then the concentration of hydrogen peroxide could be obtained from the responding current and consequently, the concentration of the glucose could be determined. At 30 ℃, the TB (Time Base) graphs for the carbon paste electrode modified with ruthenium hexacyanoferrate [ruthenium hexacyanoferrate( Ⅱ ) : graphite carbon powders = 3 : 7 ( weight ratio )] were plotted to evaluate the effect of reaction parameters on the responding current of detection of hydrogen peroxide. After the optimum conditions were determined, the carbon paste electrode was used to determine the sensitivity of detection of hydrogen peroxide and glucose. EXPERIMENTAL SECTION : ABSTRACT : CONCLUSIONS : The results showed that the optimum weight ratio for carbon paste : ruthenium hexacyanoferrate( Ⅱ ) : carbon powders was 1 : 0.3 : 0.7. At 30 ℃, -200mV operating potential, 600rpm stirring rate and in 0.05 M PBS buffer solution( pH = 7.4 ), when the carbon paste electrode was modified with the ruthenium hexacyanoferrate( Ⅱ ), the detection limit was 0.02 mM H 2 O 2, the linear range was 0.02 ~ 2.7 mM H 2 O 2, R 2 =0.9996, and the sensitivity was μA/cm 2 ּmM H 2 O 2. For the glucose biosensor, the detection limit was 0.02 mM C 6 H 12 O 6, the linear range was 0.02~2.56 mM C 6 H 12 O 6 (R 2 =0.999), and the sensitivity was 4.11 µA/cm 2 . mM C 6 H 12 O 6. The optimum operating conditions are -200mV operating potential, 600rpm stirring rate and in 0.05 M PBS buffer solution( pH = 7.4 ). Preparation of Working Electrode : 1. Take one section of 7 cm electric wire with 0.05 cm inside diameter. After depriving the coating 0.5 cm length from both ends, the nake-ended wire was washed, dried and ready for use. 7 cm 0.5 cm 0.05 cm 2. Then the ruthenium hexacyanoferrate( Ⅱ ) powders, carbon powders and carbon paste were mixed with the appropriate ratio. 3. After the mixing was complete, the mixture was evenly coated on the nake-ended electric wire and dried in the oven and then we obtained the carbon paste electrode. Fig 1. CV graphs for (A) carbon paste electrode modified with ruthenium hexacyanoferrate( the range of scanning potential: -0.8 ~ +0.8 V) (B) unmodified carbon paste electrode( the range of scanning potential: -0.6 ~ +0.6 V) 1.M. A. Kim and W.-Y. Lee, “Amperometric Phenol Biosensor Based on Sol-Gel Silicate/Nafion Composite Film,” Analytica Chimica Acta, 479, 143 (2003). 2. M. Yang, J. Jiang, Y. Lu, Y. He, G. Shen and R. Yu, “Functional Histidine/Nickel Hexacyanoferrate Nanotube Assembly for Biosensor Applications,” Biomaterials, 28, 3408 (2007). 3. C. Guo, F. Hu, C. M. Li and P. K. Shen, “Direct Electrochemistry of Hemoglobin on Carbonized Titania Nanotubes and Its Application in a Sensitive Reagentless Hydrogen Peroxide Biosensor,” Biosensors and Bioelectronics, 24, 819 (2008). 4. X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie and S. Yao, “Amperometric Glucose Biosensor Based on Boron-Doped Carbon Nanotubes Modified Electrode,” Talanta, 76, 763 (2008). REFERENCES : Ruthenium Hexacyanoferrate Powders Preparation of Ruthenium Hexacyanoferrate : 30 mM Potassium Hexacyanoferrate 5 mL 3 mM Ruthenium Chloride Hydrate 50 mL Centrifuging Repeat Centrifuging Three Times Drying ruthenium hexacyanoferrate carbon powder ( appropriate ratio ) A powder appropriate A powder adding carbon paste 4. After the above mentioned carbon paste electrode was dried, the 3μL glucose oxidase solution( 3mg of glucose oxidase was dissolved in 200μL PBS buffer solution ) was put onto the surface of electrode and the electrode was dried at room temperature. Then 5μL of 1% Nafion solution(in 95% alcohol) was dropped onto the electrode evenly and after the electrode was dried at room temperature, we obtained the glucose biosensor. Glucose Oxidase Nafion PVC cover ( ) Fig. 2 The TB graphs of carbon paste electrode for detection of H 2 O 2 at different operating potentials ( ruthenium hexacyanoferrate : graphite carbon powders = 3 : 7); the operating potentials are [ (A) –50mV (B) –100mV (C) –200mV (D) –300mV ] Fig. 4 The TB graphs of carbon paste electrode for detection of H 2 O 2 at different pH values of PBS buffer solution ( ruthenium hexacyanoferrate : graphite carbon powders = 3 : 7); the pH values are [ (A) pH = 4 (B) pH = 5 (C) pH = 6 (D) pH = 7 (E) pH = 7.4 (F) pH = 8 ] Fig. 5 The TB graph of glucose biosensor for detection of the detection limit of glucose (ruthenium hexacyanoferrate( Ⅱ ) : graphite carbon powders = 3 : 7). Fig. 3 The TB graphs of carbon paste electrode for detection of H 2 O 2 at different stirring rates ( ruthenium hexacyanoferrate : graphite carbon powders = 3 : 7); the stirring rates are [ (A) 300rpm (B) 400rpm (C) 500rpm (D) 600rpm(E) 700rpm] Fig. 6 The TB graphs of glucose biosensor for detection of glucose ( ruthenium hexacyanoferrate( Ⅱ ) : carbon powders = 3 : 7); At 30 ℃ ; the operating potential = –200 m V; in 0.1 M KCl of 5 mL 0.05 M PBS buffer solution ( pH=7.4 ); stirring rate=600 rpm; 16μL of 100mM glucose is injected per 100 seconds