FRAMES AND MACHINES Today’s Objectives: Students will be able to: a) Draw the free body diagram of a frame or machine and its members. b) Determine the.

Slides:



Advertisements
Similar presentations
Frames and Machines.
Advertisements

Analysis of Structures
WEDGES AND FRICTIONAL FORCES ON FLAT BELTS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
WEDGES AND FRICTIONAL FORCES ON FLAT BELTS
PREPARED BY : NOR AZAH BINTI AZIZ KOLEJ MATRIKULASI TEKNIKAL KEDAH
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
READING QUIZ Frames are generally ________ and are used to ______ loads. A) stationary; transmit B) moving; support C) stationary; support D) moving; transmit.
Students will be able to: a) Determine the forces on a wedge.
ME221Lecture #321 ME 221 Statics Lecture #32 Section 6.9.
More Truss Analysis Problems
INTERNAL FORCES (Section 7.1)
FRAMES AND MACHINES (Section 6.6)
CHAP6. Structural Analysis.
TRUSSES – METHODS OF JOINTS
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Chapter 6 Structural Analysis Section 6.6 FRAMES AND MACHINES
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Students will be able to:
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
3D Rigid Body Equilibrium. (Reference 5.5 and 5.6)
Licensed Electrical & Mechanical Engineer
IZMIR INSTITUTE OF TECHNOLOGY Department of Architecture AR231 Fall12/ Dr. Engin Aktaş 1 Analysis of the Structures.
Copyright © 2010 Pearson Education South Asia Pte Ltd
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Today’s Objectives: Students will be able to :
1 ENGINEERING MECHANICS STATICS & DYNAMICS Instructor: Eng. Eman Al.Swaity University of Palestine College of Engineering & Urban Planning Chapter 6: Structural.
ENGINEERING MECHANICS STATICS & DYNAMICS
RIGID BODY EQUILIBRIUM IN 3-D (Sections 5.5 – 5.7)
Today’s Objective: Students will be able to:
Students will be able to:
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUATIONS OF EQUILIBRIUM IN 2-D
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
ME 201 Engineering Mechanics: Statics
HW Review 12 th Edition (p. 180) (p. 180) (p. 182) (p. 190) (p. 190) Quiz on Thursday Couple moments.
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS In-Class Activities: Check Homework, if any Reading Quiz Applications Equations of Equilibrium.
READING QUIZ Answers: 1.D 2.A
THE METHOD OF SECTIONS In-Class Activities: Check Homework, if any Reading Quiz Applications Method of Sections Concept Quiz Group Problem Solving Attention.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading Quiz.
FRAMES AND MACHINES In-Class Activities: Check Homework, if any Reading Quiz Applications Analysis of a Frame/Machine Concept Quiz Group Problem Solving.
מרצה : ד " ר ניר שוולב מתרגלים : עודד מדינה ליאור קבסה.
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Objectives: a) Identify support reactions, and, b) Draw a free-body diagram.
ANALYSIS OF STRUCTURES
Structures and Machines
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Today’s Objective: Students will be able to:
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Structure I Course Code: ARCH 208
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Today’s Objective: Students will be able to:
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
TRUSSES – METHODS OF JOINTS
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
Statics Course Code: CIVL211 Dr. Aeid A. Abdulrazeg
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Engineering Mechanics : STATICS
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
SIMPLE TRUSSES, THE METHOD OF JOINTS, & ZERO-FORCE MEMBERS
Engineering Mechanics : STATICS
Presentation transcript:

FRAMES AND MACHINES Today’s Objectives: Students will be able to: a) Draw the free body diagram of a frame or machine and its members. b) Determine the forces acting at the joints and supports of a frame or machine. In-Class Activities: Check Homework, if any Reading Quiz Applications Analysis of a Frame/Machine Concept Quiz Group Problem Solving Attention Quiz

READING QUIZ 1. Frames and machines are different as compared to trusses since they have ___________. A) only two-force members B) only multiforce members C) at least one multiforce memberD) at least one two-force member 2. Forces common to any two contacting members act with _______ on the other member. A) equal magnitudes but opposite sense B) equal magnitudes and the same sense C) different magnitudes but opposite sense D) different magnitudes but the same sense

APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a frame?

APPLICATIONS (continued) Machines, like these above, are used in a variety of applications. How are they different from trusses and frames? How can you determine the loads at the joints and supports? These forces and moments are required when designing the machine members.

FRAMES AND MACHINES: DEFINITIONS Frames and machines are two common types of structures that have at least one multi-force member. (Recall that trusses have nothing but two-force members). Frames are generally stationary and support external loads. Machines contain moving parts and are designed to alter the effect of forces.

STEPS FOR ANALYZING A FRAME OR MACHINE 1. Draw the FBD of the frame or machine and its members, as necessary. Hints: a) Identify any two-force members, b) Forces on contacting surfaces (usually between a pin and a member) are equal and opposite, and, c) For a joint with more than two members or an external force, it is advisable to draw a FBD of the pin. 2. Develop a strategy to apply the equations of equilibrium to solve for the unknowns. Problems are going to be challenging since there are usually several unknowns. A lot of practice is needed to develop good strategies. F AB Pin B

F AB Pin B Finishing the example Solving for Member BC +  M B = Cy (4) – 2000 (2) = 0 Cy = 1000 N +  Fy = Fab sin(60) – 2000 – Cy = 0 Fab = 3000/.866 =  Fx = Fab cos(60) – Cx = 0 Cx = Fab cos(60) = 1732

GROUP PROBLEM SOLVING Given:A frame and loads as shown. Find:The reactions that the pins exert on the frame at A, B and C. Plan: a) Draw a FBD of members AB and BC. b) Apply the equations of equilibrium to each FBD to solve for the six unknowns. Think about a strategy to easily solve for the unknowns.

GROUP PROBLEM SOLVING (continued) +  M A = B X (0.4) + B Y (0.4) – 1000 (0.2) = 0 +  M C = -B X (0.4) + B Y (0.6) (0.4) = 0 B Y = 0and B X = 500 N Equating moments at A and C to zero, we get: FBDs of members AB and BC: B Y B B X 0.4m 500N C 0.2m 0.4m C Y A X A B B Y B X 1000N A Y 45º 0.2m

 +  F X = A X – 500 = 0 ; A X = 500 N  +  F Y = A Y – 1000 = 0 ; A Y = 1,000 N Consider member BC:  +  F X = 500 – C X = 0 ; C X = 500 N  +  F Y = C Y – 500 = 0 ; C Y = 500 N Applying E-of-E to bar AB: GROUP PROBLEM SOLVING (continued)

ATTENTION QUIZ 1. When determining the reactions at joints A, B, and C, what is the minimum number of unknowns for solving this problem? A)3B) 4 C)5D) 6 2. For the above problem, imagine that you have drawn a FBD of member AB. What will be the easiest way to write an equation involving unknowns at B? A)  M C = 0B)  M B = 0 C)  M A = 0D)  F X = 0

SIMPLE PULLEY EXAMPLE Given:The Block and tackle supports a 1000 lb load. Find:The force P necessary for equilibrium. Plan: a) Draw FBDs of the two pulleys. b) Apply the equations of equilibrium and solve for the unknowns.

SIMPLE PULLEY EXAMPLE -- Solved Note that the tension of a cable around a frictionless pulley is the same on both sides +  Fy = 2P – 1000 = 0 P = 500

CONCEPT QUIZ 1. The figures show a frame and its FBDs. If an additional couple moment is applied at C, then how will you change the FBD of member BC at B? A)No change, still just one force (F AB ) at B. B)Will have two forces, B X and B Y, at B. C)Will have two forces and a moment at B. D)Will add one moment at B.

2. The figures show a frame and its FBDs. If an additional force is applied at D, then how will you change the FBD of member BC at B? A)No change, still just one force (F AB ) at B. B)Will have two forces, B X and B Y, at B. C)Will have two forces and a moment at B. D)Will add one moment at B. CONCEPT QUIZ (continued)  D D

A MORE CHALLENGING EXAMPLE Given:The wall crane supports an external load of 700 lb. Find:The force in the cable at the winch motor W and the horizontal and vertical components of the pin reactions at A, B, C, and D. Plan: a) Draw FBDs of the frame’s members and pulleys. b) Apply the equations of equilibrium and solve for the unknowns.

 +  F Y = 2 T – 700 = 0 T = 350 lb FBD of the Pulley E T T E 700 lb Necessary Equations of Equilibrium: EXAMPLE (continued)

 +  F X = C X – 350 = 0 C X = 350 lb  +  F Y = C Y – 350 = 0 C Y = 350 lb  +  F X = – B X – 350 sin 30° = 0 B X = 175 lb  +  F Y = B Y – 350 cos 30° = 0 B Y = lb A FBD of pulley B BYBY BXBX 30° 350 lb B A FBD of pulley C C 350 lb CYCY CXCX

EXAMPLE (continued) Please note that member BD is a two- force member. +  M A = T BD sin 45° (4) – (4) – 700 (8) = 0 T BD = 2409 lb  +  F Y = A Y sin 45° – – 700 = 0 A Y = – 700 lb  +  F X = A X – 2409 cos 45° – 350 = 0 A X = 1880 lb A FBD of member ABC AXAX AYAY A 45° T BD B 175 lb lb 700 lb 350 lb 4 ft

EXAMPLE (continued) At D, the X and Y component are  + D X = –2409 cos 45° = –1700 lb  + D Y = 2409 sin 45° = 1700 lb A FBD of member BD 45° 2409 lb B D