WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - -> D(K S + -) K - Dalitz analysis B -> B -> K (*) Conclusion V ud V ub V cd V cb V td V tb * * * 3()3() 2()2() 1()1()
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Using B - D CP K - mode (GLW method) B - D CP K - where D CP = (D 0 D 0 ) A(B - D CP K - ) |A(B - D 0 K - )|+|A(B - D 0 K - )|e i e i A(B + D CP K + ) |A(B + D 0 K + )|+|A(B + D 0 K + )|e -i e i When D 0 D 0 CP-even states (D 1 ): K + K -, + - CP-odd states (D 2 ): K S 0, K S , K S , K S , K S ’ ¯ 3 3 common final state ¯ ¯ PLB 253(1991)483 PLB 265(1991)172 } Color-favored b uu c u K D B o } uu c K D B Color-suppressed V cb V ub - s } s o } 3 =arg(V ub ) u - * b
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays GLW method cont….. 33 A(B + D 0 K + )A(B - D 0 K - ) A(B + D 0 K + ) A(B - D 0 K - ) A(B + D CP K + ) A(B - D CP K - ) = Reconstruct the two triangles 3 — -3-3 One can measure 3 even if =0( without strong phase) Non vanishing strong phase ( 0) Direct CP violation
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays GLW method cont… Solution: One can instead measure R 1,2 = R /R D CP D non-CP = 1 + r 2 2r cos( )cos( 3 ) where R D CP B (B - D 1,2 K - ) + C.C B (B - D 1,2 - ) + C.C = A 1,2 = B (B - D 1,2 K - )B (B + D 1,2 K + ) B (B - D 1,2 K - ) - + 2r sin( )sin( 3 ) 3 independent measurements 3 unknowns r, , 3 (solve it) But A 1 R 1 = - A 2 R r 2 2r cos( )cos( 3 ) B (B + D 1,2 K + ) = Amp(B - D 0 K - ) 0.1 x Amp(B - D 0 K - ) Also B - D 0 [K + - ]K - has same final state as B - D 0 [K + - ]K - (DCSD) But _ _ r = |B KD|/|B KD| _
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Kinematics to identify signal Candidates are identified by two kinematic variables Beam constrained mass (M bc )= (E 2 beam -p B 2 ) Energy difference ( E) = E B - E beam (4S) peak energy: 24% BB 76% Continuum (qq, q =u, d, c or s) KEKB operates here – We use continuum suppression variables -> LR( Cos B, Fisher) -
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Results (78 fb -1 ) B D B D K Flavor specific CP even CP odd 6052 5.0 EE EE
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Double ratios( R 1,2 ) and asymmetries( A 1,2 ) R 1 = 1.21 0.25 0.14 and R 2 = 1.41 0.27 0.15 A 0 = 0.04 0.06(stat) 0.03 (sys) ( non-CP mode) A 1 = 0.19(stat) 0.04 (sys) ( CP + mode) A 2 = 0.17 (stat) 0.05(sys) ( CP – mode) We cannot constrain 3 with these statistics 6.5 EEEE CP even CP odd ( r 2 = 0.31 ± 0.21, just 1.5 away from physical boundary) r = |B KD|/|B KD| _
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B - D 0 K* - mode (90 fb -1 data) Signal MC data Works exactly same way as B - -> D CP K - decay Look for CP asymmetries and double ratios -> constraint ± Flavor specific modes
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B - D CP K* - mode Can not constraint 3 with this statistics -> need more data CP asymmetries : A 1 = ± 0.33(stat) ± 0.07(sys) A 2 = 0.19± 0.50(stat) ± 0.04(sys) 13.1 ± 7.2 ± CP-even CP-odd
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ± D(K S + - )K ± Dalitz analysis(140 fb - 1 ) In case of B - D CP K - where D CP =(D 0 D 0 ) both D 0 and D 0 decays to CP eigenstates ( K + K -..) One can write the total amplitude for B + DK + : Amp(B + ->DK + ) = f(m + 2,m - 2 ) + r. e i( 3 + ) f(m - 2, m + 2 ) (B - decay amplitude can be written similar way : -> , 3 -> - 3 ) m + 2 (m - 2 ) -> squared of invariant mass of K S + ( - )combinations f -> complex amplitude of D 0 -> K S + - decay f( m + 2,m - 2 ) = a k. e i A k (m + 2,m - 2 ) + b e i -> both 2-body resonances and non-res component - - D0K0 D0K0 D0K0 D0K0 D0KS D0KS
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Suppose all D 0 K 0 decays are via K* D 0 K* K S D 0 K* K S M(K S ) 2 M(K S ) 2 Dalitz plot interference Simple example
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays D 0 K S K* KSKS KSKS KSf2KSf2 reality is more complex(& better) many amplitudes & strong phases(13) lots of interference
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Fit results for D ->K S + - decay ResonanceAmplitudePhase K *-( 892) + K S 0 K *+( 892) - K S K S f 0 (980) K S f 0 (1370) K S f 2 (1270) K * 0 - (1430) + K * 2 - (1430) + K *- (1680) + K S 1 ( M=535±6 MeV, =460±15 MeV ) K S 2 ( M=1063±7 MeV, =101±12 MeV ) Non-resonance ± (fixed) ± ± ± ± ± ± ± ± ± ± ± ± (fixed) 330 ± ± ± ± ± ± ± ± ± ± ± 1.6
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays BB B+B+ B ± D(K S + - )K ± Dalitz analysis Fit Dalitz distributions for B + and B - decay simultaneously -> r, 3, as free parameters Use D 0 K S to make Dalitz-plot model fit 58K events with 13 amplitudes Select B ± K ± D 0 ( K S events 107 ± 12 events in 142 fb -1 Belle data Form Dalitz plots for B + & B
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ± D(K S + - )K ± Dalitz analysis Weak phase 3 = 95 0 ±25 0 (stat) ±13 0 (sys)±10 0 strong phase = ±25 0 (stat) ±12 0 (sys) ±24 0 (3 rd error is model uncertainty) r = 0.33 ± C.L : 0.15<r<0.5,61 0 < 3 <142 0, < <214 0 33 r 33 r = |B KD|/|B KD| _
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B -> + 0 mode(first observation) data used:78 fb -1 B (B + -> + 0 ) =(31.7 7.1(stat) 6.4(sys) 2.1(pol))x10 -6 A CP (B -> 0 ) = (0.1 ±22.4(stat) ±2.8(sys))% First observation of charmless vector-vector mode 00 ++ 00 ++ B+B+ B+B+ u b d - W u u u u u b d u u - - W Z/ EWP
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Helicity analysis 0 momentum requirement final state is vector-vector system -> give S,P or D wave Both longitudinal and transverse polarization are possible Longitudinal pol. ratio, = (94.8 10.6(stat) 2.1(sys))% LL fit result
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B -> K (*) (78 fb -1 ) BF’s - - b s u - Penguin ModeBF x K + K 0 K *0 K *+ 9.4 ± 1.1 ± ± 2.2 ± ± 1.6 ± ± 2.1 ± 1.0 s s u W u, c, t ± ± ±9.1 8± ±4.5 V ts
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B -> K * (78 fb -1 ) polarization K+K+ |A 0 | 2 = 0.43 ± 0.09 ± 0.04 |A | 2 = 0.41 ± 0.10 ± 0.04 (CP odd and CP even states) and arg(A ) = 0.48 ± 0.32 ± 0.06 arg(A ) = ± 0.39 ± 0.09 T T = Distribution of decays ->A 0, A, A, tr, , tr T = K*K* A x -> complex amplitudes Amplitudes are determined by unbinned max likelihood fit: z tr
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Summary Now we have better measurement on CP asymmetries and ratio of BF’s in B - -> D CP K - mode Constrained 3 using Dalitz analysis of B - -> D(K S + - )K - decay Measured the branching fractions and different helicity amplitudes in B -> mode. Measured the branching fractions and helicity amplitudes in B -> K (*) mode Lot more other hadronic rare B-decays……..
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays MC with 3 = 70 o B + / B
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays ~2.4σ separation BB B+B+ B ± D(K S + - )K ± Dalitz analysis Fit Dalitz distributions for B + and B - decay simultaneously -> r, 3, as free parameters
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays KEKB Accelerator Two separate rings Finite crossing angle L designed = cm -2 s -1 Achieved: L peak > cm -2 s -1 Integrated Luminosity ~ 158 fb -1 E e = 3.5 GeV E e = 8.0 GeV + -
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Detector Performance K/ separation is done using: ACC, TOF, dE/dx( CDC) PID(K) = Wide momentum range L(K) L(K) + L( )
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Background Suppression Variables to distinguish signal from continuum events Cos B Event Shape variable: (Fisher) BB : Spherical Continuum: back-to-back(jet-like) – BB e+e+ e-e- B CONTINUUM SIGNAL
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Cos B Fisher Likelihood ratio Background Suppression Signal Continuum
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Main question: “Is V unitary” ? Three generation quark mixing matrix(V) V = 3 = arg(V * ) ub (Also known as ) V ud V ub + V cd V cb + V td V tb = 0 Orthogonality of 1 st and 3 rd column gives: ** * a b -b = arg( ) a -b * – 3 = arg( ) V cd V cb V ud V ub * V cd V cb V td V tb * * * 3()3() 2()2() 1()1()