WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
APR01 APS Recent results from Belle: Reflections on Beauty Kay Kinoshita University of Cincinnati Belle Collaboration.
Measurements of sin2  from B-Factories Masahiro Morii Harvard University The BABAR Collaboration BEACH 2002, Vancouver, June 25-29, 2002.
6/2/2015Attila Mihalyi - Wisconsin1 Recent results on the CKM angle  from BaBar DAFNE 2004, Frascati, Italy Attila Mihalyi University of Wisconsin-Madison.
EPS, July  Dalitz plot of D 0   -  +  0 (EPS-208)  Kinematic distributions in  c   e + (EPS-138)  Decay rate of B 0  K * (892) +  -
Study of B  D S ( * )  D*  *   and D ( * ) (4  )   at CLEO Jianchun Wang Syracuse University Representing The CLEO Collaboration DPF 2000 Aug 9.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
A. BondarModel-independent φ 3 measurement August 6, 2007Charm 2007, Cornell University1/15 γ/φ 3 model-independent Dalitz analysis (Dalitz+CP tagged Dalitz.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
Pakhlov Pavel (ITEP, Moscow) Why B physics is still interesting Belle detector Measurement of sin2  Rare B decays Future plans University of Lausanne.
Measurements of Radiative Penguin B Decays at BaBar Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration 32 nd International.
1 B s  J/  update Lifetime Difference & Mixing phase Avdhesh Chandra for the CDF and DØ collaborations Beauty 2006 University of Oxford, UK.
Recent Charm Results From CLEO Searches for D 0 -D 0 mixing D 0 -> K 0 s  +  - D 0 ->K *+ l - Conclusions Alex Smith University of Minnesota.
Sep 11, 2006SLUO Anual Meeting Search for Super-Penguins: CP Violation in B 0 ->K+K-K 0 D. Dujmic, SLAC For BABAR Collaboration D. Dujmic, SLAC For.
Sacha Kopp, Univ. Texas -- Austin 1 Search for CP in Rare B Decays Sacha E. Kopp, University of Texas – Austin for the CLEO Collaboration.
Measurements of  and future projections Fabrizio Bianchi University of Torino and INFN-Torino Beauty 2006 The XI International Conference on B-Physics.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
CP Asymmetry in B 0 ->π + π – at Belle Kay Kinoshita University of Cincinnati Belle Collaboration B 0 ->π + π – and CP asymmetry in CKMB 0 ->π + π – and.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
1. Outline 2 Dr. Prafulla Kumar Behera, IIT Madras 9 th June 2015.
1 Disclaimer This talk is not for B physics experts. Taipei101 If you did it, you may check s during my talk. B0B0 B0B0.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
CP violation at Belle Kenkichi Miyabayashi for Belle collaboration (Nara Women’s University) 2003/Oct./14th BEAUTY2003.
Takeo Higuchi Institute of Particle and Nuclear Studies, KEK for the Belle collaboration Oct 14, 2003; Pittsburgh, PA Takeo Higuchi, KEK BEAUTY2003 Hot.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
DPF 2009 Richard Kass 1 Search for b → u transitions in the decays B → D (*) K - using the ADS method at BaBar Outline of Talk *Introduction/ADS method.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
August 20, 2007 Charmless Hadronic B decays at BaBar1 Charmless Hadronic B Decays at BaBar Woochun Park University of South Carolina Representing the BaBar.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
1 CP violation in B → ,  Hiro Sagawa (KEK) FLAVOR PHYSICS & CP VIOLATION, Ecole Polytechnique, Paris, France on June 3-6, 2003.
Rare B Decays at Belle Hsuan-Cheng Huang ( 黃宣誠 ) National Taiwan University 2 nd BCP NTU, Taipei June 7 - 9, 2002.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Search for CP Violation in B 0  h decays and B 0  h decays with B A B AR International Europhysics Conference on High Energy Physics, July 17 th -23.
Physical Program of Tau-charm Factory V.P.Druzhinin, Budker INP, Novosibirsk.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Branching Ratios and Angular Distribution of B  D*  Decays István Dankó Rensselaer Polytechnic Institute (CLEO Collaboration) July 17, 2003 EPS Int.
High precision and new CP violation measurements with LHCb Michael Koratzinos, CERN EPS HEP 99 Tampere,15 July 1999.
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
B  K   p  and photon spectrum at Belle Heyoung Yang Seoul National University for Belle Collaboration ICHEP2004.
Measurement of sin2  at B A B AR Douglas Wright Lawrence Livermore National Laboratory B A B AR For the B A B AR Collaboration 31st International Conference.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
1 EPS03, July 17-23, 2003Lorenzo Vitale Time dependent CP violation studies in D(*)D(*) and J/ψ K* Lorenzo Vitale INFN Trieste On behalf of BaBar and Belle.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
1 Absolute Hadronic D 0 and D + Branching Fractions at CLEO-c Werner Sun, Cornell University for the CLEO-c Collaboration Particles and Nuclei International.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
Jeroen van Hunen (for the LHCb collaboration) The sensitivity to  s and  Γ s at LHCb.
5 Jan 03S. Bailey / BaBar : B decays to Measure gamma1 B Decays to Measure  Stephen Bailey Harvard University for the BaBar Collaboration PASCOS 2003.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
New Results in Charmless B Meson Decays at New Results in Charmless B Meson Decays at Justin Albert Univ. of Victoria 20 July, 2013 Representing the BaBar.
DCPV/Rare George W.S. Hou (NTU) Beauty Assisi 1 Direct CP and Rare Decays June 21, 2005 B Physics at Hadronic Machines, Assisi.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
ICHEP 2004, Beijing 1 Recent Results on B decays Y.Sakai (Belle/KEK) - Rare B Decay Highlights + Belle b  sqq Time-dependent CPV - -
Mats Selen, HEP Measuring Strong Phases, Charm Mixing, and DCSD at CLEO-c Mats Selen, University of Illinois HEP 2005, July 22, Lisboa, Portugal.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
γ determination from tree decays (B→DK) with LHCb
Attila Mihalyi University of Wisconsin-Madison
D0 Mixing and CP Violation from Belle
How charm data may help for φ3 measurement at B-factories
f3 measurements by Belle
Measurement of f3 using Dalitz plot analysis of B+ D(*)K(*)+ by Belle
Presentation transcript:

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - -> D(K S  +  -) K - Dalitz analysis B ->  B ->  K (*) Conclusion V ud V ub V cd V cb V td V tb * * * 3()3() 2()2() 1()1()

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Using B -  D CP K - mode (GLW method) B -  D CP K - where D CP = (D 0  D 0 ) A(B -  D CP K - )  |A(B -  D 0 K - )|+|A(B -  D 0 K - )|e i  e i  A(B +  D CP K + )  |A(B +  D 0 K + )|+|A(B +  D 0 K + )|e -i  e i  When D 0 D 0 CP-even states (D 1 ): K + K -,  +  - CP-odd states (D 2 ): K S  0, K S , K S , K S , K S  ’ ¯ 3 3 common final state ¯ ¯ PLB 253(1991)483 PLB 265(1991)172 } Color-favored b uu c u K D B o } uu c K D B Color-suppressed V cb V ub - s } s o }  3 =arg(V ub ) u - * b

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays GLW method cont….. 33   A(B +  D 0 K + )A(B -  D 0 K - ) A(B +  D 0 K + ) A(B -  D 0 K - ) A(B +  D CP K + ) A(B -  D CP K - ) = Reconstruct the two triangles   3 — -3-3 One can measure  3 even if  =0( without strong phase) Non vanishing strong phase (   0)  Direct CP violation

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays GLW method cont… Solution: One can instead measure R 1,2 = R /R D CP D non-CP = 1 + r 2  2r cos(  )cos(  3 ) where R D CP B (B -  D 1,2 K - ) + C.C B (B -  D 1,2  - ) + C.C = A 1,2 = B (B -  D 1,2 K - )B (B +  D 1,2 K + ) B (B -  D 1,2 K - ) - +  2r sin(  )sin(  3 ) 3 independent measurements  3 unknowns r, ,  3 (solve it) But A 1 R 1 = - A 2 R r 2  2r cos(  )cos(  3 ) B (B +  D 1,2 K + ) = Amp(B -  D 0 K - )  0.1 x Amp(B -  D 0 K - ) Also B -  D 0 [K +  - ]K - has same final state as B -  D 0 [K +  - ]K - (DCSD) But _ _ r = |B  KD|/|B  KD| _

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Kinematics to identify signal Candidates are identified by two kinematic variables Beam constrained mass (M bc )=  (E 2 beam -p B 2 ) Energy difference (  E) = E B - E beam  (4S) peak energy: 24% BB 76% Continuum (qq, q =u, d, c or s) KEKB operates here  – We use continuum suppression variables -> LR( Cos  B, Fisher) -

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Results (78 fb -1 ) B  D  B  D K Flavor specific CP even CP odd 6052          5.0 EE EE

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Double ratios( R 1,2 ) and asymmetries( A 1,2 ) R 1 = 1.21  0.25  0.14 and R 2 = 1.41  0.27  0.15 A 0 = 0.04  0.06(stat)  0.03 (sys) ( non-CP mode) A 1 =  0.19(stat)  0.04 (sys) ( CP + mode) A 2 =  0.17 (stat)  0.05(sys) ( CP – mode) We cannot constrain  3 with these statistics     6.5 EEEE CP even CP odd ( r 2 = 0.31 ± 0.21, just 1.5  away from physical boundary) r = |B  KD|/|B  KD| _

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B -  D 0 K* - mode (90 fb -1 data) Signal MC data Works exactly same way as B - -> D CP K - decay Look for CP asymmetries and double ratios -> constraint  ±  Flavor specific modes

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B -  D CP K* - mode Can not constraint  3 with this statistics -> need more data CP asymmetries : A 1 = ± 0.33(stat) ± 0.07(sys) A 2 = 0.19± 0.50(stat) ± 0.04(sys) 13.1 ±  7.2 ±  CP-even CP-odd

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ±  D(K S  +  - )K ± Dalitz analysis(140 fb - 1 ) In case of B -  D CP K - where D CP =(D 0  D 0 ) both D 0 and D 0 decays to CP eigenstates ( K + K -..) One can write the total amplitude for B +  DK + : Amp(B + ->DK + ) = f(m + 2,m - 2 ) + r. e i(  3 +  ) f(m - 2, m + 2 ) (B - decay amplitude can be written similar way :  -> ,  3 -> -  3 ) m + 2 (m - 2 ) -> squared of invariant mass of K S  + (  - )combinations f -> complex amplitude of D 0 -> K S  +  - decay f( m + 2,m - 2 ) =  a k. e i  A k (m + 2,m - 2 ) + b e i  -> both 2-body resonances and non-res component - - D0K0 D0K0  D0K0 D0K0  D0KS D0KS 

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Suppose all D 0  K 0     decays are via K*  D 0  K*    K S   D 0  K*    K S   M(K S   ) 2 M(K S   ) 2 Dalitz plot interference Simple example

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays D 0  K S     K*  KSKS KSKS KSf2KSf2 reality is more complex(& better) many amplitudes & strong phases(13) lots of interference

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Fit results for D ->K S  +  - decay ResonanceAmplitudePhase K *-( 892)  + K S  0 K *+( 892)  - K S  K S f 0 (980) K S f 0 (1370) K S f 2 (1270) K * 0 - (1430)  + K * 2 - (1430)  + K *- (1680)  + K S  1 ( M=535±6 MeV,  =460±15 MeV ) K S  2 ( M=1063±7 MeV,  =101±12 MeV ) Non-resonance ± (fixed) ± ± ± ± ± ± ± ± ± ± ± ± (fixed) 330 ± ± ± ± ± ± ± ± ± ± ± 1.6

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays BB B+B+ B ±  D(K S  +  - )K ± Dalitz analysis Fit Dalitz distributions for B + and B - decay simultaneously -> r,  3,  as free parameters Use D 0  K S     to make Dalitz-plot model fit 58K events with 13 amplitudes Select B ±  K ± D 0 (  K S      events 107 ± 12 events in 142 fb -1 Belle data Form Dalitz plots for B + & B 

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ±  D(K S  +  - )K ± Dalitz analysis Weak phase  3 = 95 0 ±25 0 (stat) ±13 0 (sys)±10 0 strong phase  = ±25 0 (stat) ±12 0 (sys) ±24 0 (3 rd error is model uncertainty) r = 0.33 ± C.L : 0.15<r<0.5,61 0 <  3 <142 0, <  <214 0 33 r  33 r = |B  KD|/|B  KD| _

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ->  +  0 mode(first observation) data used:78 fb -1 B (B + ->  +  0 ) =(31.7  7.1(stat)  6.4(sys)  2.1(pol))x10 -6 A CP (B  ->    0 ) = (0.1 ±22.4(stat) ±2.8(sys))% First observation of charmless vector-vector mode 00 ++ 00 ++ B+B+ B+B+ u b d - W u u u u u b d u u - - W Z/  EWP

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Helicity analysis  0 momentum requirement  final state is vector-vector system -> give S,P or D wave Both longitudinal and transverse polarization are possible  Longitudinal pol. ratio, = (94.8  10.6(stat)  2.1(sys))% LL  fit result

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ->  K (*) (78 fb -1 ) BF’s - - b s u - Penguin ModeBF x  K +  K 0  K *0  K *+ 9.4 ± 1.1 ± ± 2.2 ± ± 1.6 ± ± 2.1 ± 1.0 s s u W u, c, t ± ± ±9.1 8± ±4.5 V ts

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays B ->  K * (78 fb -1 ) polarization K+K+ |A 0 | 2 = 0.43 ± 0.09 ± 0.04 |A | 2 = 0.41 ± 0.10 ± 0.04 (CP odd and CP even states) and arg(A ) = 0.48 ± 0.32 ± 0.06 arg(A ) = ± 0.39 ± 0.09 T T = Distribution of decays ->A 0, A, A,  tr, ,  tr T = K*K* A x -> complex amplitudes Amplitudes are determined by unbinned max likelihood fit: z  tr

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Summary Now we have better measurement on CP asymmetries and ratio of BF’s in B - -> D CP K - mode Constrained  3 using Dalitz analysis of B - -> D(K S  +  - )K - decay Measured the branching fractions and different helicity amplitudes in B ->  mode. Measured the branching fractions and helicity amplitudes in B ->  K (*) mode Lot more other hadronic rare B-decays……..

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays MC with  3 = 70 o B + / B 

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays ~2.4σ separation BB B+B+ B ±  D(K S  +  - )K ± Dalitz analysis Fit Dalitz distributions for B + and B - decay simultaneously -> r,  3,  as free parameters

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays KEKB Accelerator Two separate rings Finite crossing angle L designed = cm -2 s -1 Achieved: L peak > cm -2 s -1 Integrated Luminosity ~ 158 fb -1 E e = 3.5 GeV E e = 8.0 GeV + -

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Detector Performance K/  separation is done using: ACC, TOF, dE/dx( CDC) PID(K) = Wide momentum range L(K) L(K) + L(  )

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Background Suppression Variables to distinguish signal from continuum events  Cos  B Event Shape variable: (Fisher) BB : Spherical Continuum: back-to-back(jet-like) – BB e+e+ e-e- B CONTINUUM SIGNAL

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Cos  B Fisher Likelihood ratio Background Suppression Signal Continuum

WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Main question: “Is V unitary” ? Three generation quark mixing matrix(V) V =  3 = arg(V * ) ub (Also known as  ) V ud V ub + V cd V cb + V td V tb = 0 Orthogonality of 1 st and 3 rd column gives: ** * a b -b   = arg( ) a -b * –  3 = arg( ) V cd V cb V ud V ub * V cd V cb V td V tb * * * 3()3() 2()2() 1()1()