(Wired LANs : Ethernet)

Slides:



Advertisements
Similar presentations
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Underlying Technology.
Advertisements

13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
© 2007 Cisco Systems, Inc. All rights reserved.ICND1 v1.0—1-1 Building a Simple Network Understanding Ethernet.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
6/15/2015 Network Fundamentals IV Dr. Tim Lin ECE Department Cal Poly Pomona Add Corporate Logo Here EXIT > >
The Medium Access Control Sublayer Chapter 4. Ethernet Cabling The most common kinds of Ethernet cabling.
Ethernet By far, the dominant standard for guided media for the internet is Ethernet. How does it work?
Chapter 13 Wired LANs: Ethernet
Networking Software Solutions Chapter 4 Current Ethernet Specifications.
CHAPTER 13 Wired LANs: Ethernet
LAN SYSTEMS. GIGABIT ETHERNET Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the Standard 802.3z. The goals of the Gigabit Ethernet design.
1 Kyung Hee University Chapter 13 Wired LANs: Ethernet.
MODULE II LAN SYSTEMS.
Chapter 13 Wired LANs: Ethernet
Wired LANs: Ethernet In Chapter 1, we learned that a local area network (LAN) is a computer network that is designed for a limited geographic area such.
Wired LANs and Ethernet
1 Ethernet & IEEE Cisco Section 7.3 Stephanie Hutter October 2000.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 14 Local Area Networks: Ethernet.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Local Area Networks: Ethernet. IEEE Background Institution of Electrical and Electronic Engineering (IEEE) A professional non-profit organization Project.
1 Data Link Layer Lecture 22 Imran Ahmed University of Management & Technology.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 14 Local Area Networks: Ethernet.
McGraw-Hill©The McGraw-Hill Companies, Inc., Chapter 14 Local Area Networks: Ethernet.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Local Area Networks.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
PRESENTING BY: ABHIJEET PRADHAN K.VINOD KUMAR SITANSU DALEI ANUP PATNAIK.
C H 4 T HE M EDIUM A CCESS C ONTROL S UBLAYER 1 Medium Access Control: a means of controlling access to the medium to promote orderly and efficient use.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Data Communications, Kwangwoon University13-1 Chapter 13 Wired LANs: Ethernet 1.IEEE Standards 2.Standard Ethernet 3.Changes in the Standard 4.Fast Ethernet.
(Wired LANs : Ethernet)
Addressing Each station on an Ethernet network (such as a PC, workstation, or printer) has its own network interface card (NIC). The NIC fits inside the.
C H 4 T HE M EDIUM A CCESS C ONTROL S UBLAYER 1 Medium Access Control: a means of controlling access to the medium to promote orderly and efficient use.
Ch 13. Wired LANs: Ethernet IEEE Standards Project 802 launched in 1985 – To set standards to enable intercommunication among equipment from a variety.
Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Department of Computer Science, University of Peshawar Multiple Access.
IEEE STANDARDS IEEE STANDARDS In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication.
13.1 Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 14 Local Area Networks
Chapter 13 Wired LANs: Ethernet
LECTURE 10 NET301 11/12/2015Lect 10 NET NETWORK STANDARDS Standards determine: Techniques used in the networks. Its protocols. Network specifications.
Lecture Focus: Data Communications and Networking  Data Link Layer  MAC Frame Format Lecture 25 CSCS 311.
Wired LANs: Ethernet Shashank Srivastava Motilal Nehru national Institute Of Information Technology, Allahabad 4 Sep 2013.
Network Operations & administration CS 4592 Lecture 20 Instructor: Ibrahim Tariq.
Introduction to Communication Lecture (10) 1. 2 Wired LANs: Ethernet IEEE Project 802 defines the LLC and MAC sublayers for all LANs including Ethernet.
Powerpoint Templates Computer Communication & Networks Week # 11 Waseem Iqbal
Data Communication Networks Lec 18. Wired LAN:Ethernet Datalink layer – Logical link control(LLC) – MAC Physical layer.
ETHERNET Yash Vaidya. Introduction Ethernet is a family of computer networking technologies for local area networks (LANs). Ethernet was commercially.
Chapter 14 Local Area Networks: Ethernet. Figure 14.1 Three generations of Ethernet.
LOCAL AREA NETWORKS. LAN SYSTEMS-TRADITIONAL ETHERNET local area network (LAN) is a computer network that is designed for a limited geographic area such.
Chapter 13 Wired LANs: Ethernet Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Kyung Hee University Chapter 13 Wired LANs: Ethernet.
Wired Local Area Network (Ethernet-IEEE 802.3)
Chapter 13 Wired LANs: Ethernet
Chapter 13 Wired LANs: Ethernet
Part III. Data Link Layer
Part III Datalink Layer.
Underlying Technology
Subject Name: Computer Communication Networks Subject Code: 10EC71
IEEE STANDARDS, STANDAD ETHERNET, FAST ETHERNET, GIGABIT ETHERNET
Ethernet and Token Ring LAN Networks
Chapter 12 Local Area Networks
Chapter 13 Wired LANs: Ethernet
Local Area Networks: Ethernet
Part III Datalink Layer.
Chapter 12 Local Area Networks
Chaithra Ashwin Sanjana
Ethernet and Token Ring LAN Networks
Chapter 13 Wired LANs: Ethernet
Chapter 13 Wired LANs: Ethernet
Presentation transcript:

(Wired LANs : Ethernet) Chapter 13 유선 LAN : 이더넷 (Wired LANs : Ethernet)

13 장 유선LAN : 이더넷 (Ethernet) 13.1 IEEE 표준화 13.2 표준 이더넷 13.3 표준 변경 13.4 고속 이더넷 13.5 기가비트 이더넷 13.6 요 약

유선LAN : 이더넷(Ethernet) 이더넷의 세 가지 세대

Topics discussed in this section: 13.1 IEEE STANDARDS In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety of manufacturers. Project 802 is a way of specifying functions of the physical layer and the data link layer of major LAN protocols. Topics discussed in this section: Data Link Layer Physical Layer

IEEE 표준 (계속) IEEE standard for LANs

IEEE 표준 (계속) 데이터 링크층 물리층 LLC(Logical Link Control) 논리링크 제어 프레임 만들기 MAC(Medium Access Control) 매체 접근 방식 물리층 사용된 물리적 매체의 구현 방법과 형태에 의존

IEEE 표준 (계속) HDLC frame compared with LLC and MAC frames

Topics discussed in this section: 13.2 STANDARD ETHERNET The original Ethernet was created in 1976 at Xerox’s Palo Alto Research Center (PARC). Since then, it has gone through four generations. We briefly discuss the Standard (or traditional) Ethernet in this section. Topics discussed in this section: MAC Sublayer Physical Layer

표준 이더넷 (계속) Ethernet evolution through four generations

표준 이더넷 (계속) 표준 이더넷 MAC 부계층 접속방법 : CSMA/CD 10Mbps로 동작 매체는 모든 지국들 사이에서 서로 공유 MAC 부계층 접속 방식의 동작을 관장 상위 계층으로 부터 수신한 데이터를 프레임으로 만들고 부호화를 위한 PLS(Physical Layer Signaling) 부계층으로 전달 접속방법 : CSMA/CD

표준 이더넷 (계속) 802.3 MAC frame

표준 이더넷 (계속) 프레임 802.3 MAC 프레임 7개의 필드로 구성 확인응답을 제공하지 않으므로 신뢰성이 없음 확인 응답은 상위계층에서 구현 802.3 MAC 프레임

표준 이더넷 (계속) 프레임 형식 프리엠블(Preamble) – alert, timing, start synchronization 시작 프레임 지시기(SFD ; Start frame delimiter)-프레임시작 목적지 주소(DA ; Destination address) 발신지 주소(SA ; Source address) PDU 길이/유형 데이터 CRC – 오류 발견정보, CRC-32

표준 이더넷 (계속) Minimum and maxium length 프레임길이 프레임의 최소와 최대길이가 제한 최소값 제한 : CSMA/CD의 정확한 동작을 위함

Minimum: 64 bytes (512 bits) Maximum: 1518 bytes (12,144 bits) 표준 이더넷 (계속) Frame length: Minimum: 64 bytes (512 bits) Maximum: 1518 bytes (12,144 bits)

표준 이더넷 (계속) Example of an Ethernet address in hexadecimal notation

표준 이더넷 (계속) Unicast and multicast addresses 유니 캐스트, 멀티 캐스트, 브로드 캐스트 목적지 주소는 멀티캐스트(multicast), 브로드캐스트(broadcast)

표준 이더넷 (계속) The least significant bit of the first byte defines the type of address. If the bit is 0, the address is unicast; otherwise, it is multicast.

표준 이더넷 (계속) The broadcast destination address is a special case of the multicast address in which all bits are 1s.

Example 13.1 Define the type of the following destination addresses: a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE c. FF:FF:FF:FF:FF:FF Solution To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F’s, the address is broadcast. Therefore, we have the following: a. This is a unicast address because A in binary is 1010. b. This is a multicast address because 7 in binary is 0111. c. This is a broadcast address because all digits are F’s.

Example 13.2 Show how the address 47:20:1B:2E:08:EE is sent out on line. Solution The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:

표준 이더넷 (계속) Category of Standard Ethernet

표준 이더넷 (계속) Encoding in a Standard Ethernet implementation

표준 이더넷 (계속) 10Base5 implementation

표준 이더넷 (계속) 10Base2 implementation

표준 이더넷 (계속) 10Base-T implementation

표준 이더넷 (계속) 10Base-F implementation

표준 이더넷 (계속) Summary of Standard Ethernet implementations

13.3 CHANGES IN THE STANDARD The 10-Mbps Standard Ethernet has gone through several changes before moving to the higher data rates. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs. Topics discussed in this section: Bridged Ethernet Switched Ethernet Full-Duplex Ethernet

표준 변경 (계속) Sharing bandwidth 브리지형 이더넷 이더넷 발전의 첫번째 단계 브리지들은 대역폭의 증가와 충돌 영역의 분리

표준 변경 (계속) A network with and without a bridge

표준 변경 (계속) Collision domains in an unbridged network and a bridged network

표준 변경 (계속) Switched Ethernet

표준 변경 (계속) Full-duplex switched Ethernet

Topics discussed in this section: 13.4 FAST ETHERNET Fast Ethernet was designed to compete with LAN protocols such as FDDI or Fiber Channel. IEEE created Fast Ethernet under the name 802.3u. Fast Ethernet is backward-compatible with Standard Ethernet, but it can transmit data 10 times faster at a rate of 100 Mbps. Topics discussed in this section: MAC Sublayer Physical Layer

고속 이더넷 (계속) Fast Ethernet topology

고속 이더넷 (계속) Fast Ethernet implementations

고속 이더넷 (계속) Encoding for Fast Ethernet implementation

고속 이더넷 (계속) Summary of Fast Ethernet implementations

Topics discussed in this section: 13.5 GIGABIT ETHERNET The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the standard 802.3z. Topics discussed in this section: MAC Sublayer Physical Layer Ten-Gigabit Ethernet

In the full-duplex mode of Gigabit Ethernet, there is no collision; 기가비트 이더넷 (계속) In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.

기가비트 이더넷 (계속) Topologies of Gigabit Ethernet

기가비트 이더넷 (계속) Gigabit Ethernet implementations

기가비트 이더넷 (계속) Encoding in Gigabit Ethernet implementations

기가비트 이더넷 (계속) Summary of Gigabit Ethernet implementations

기가비트 이더넷 (계속) Summary of Ten-Gigabit Ethernet implementations

13.6 요약