Population Switching and Charge Sensing in Quantum Dots: A case for Quantum Phase Transitions Moshe Goldstein (Bar-Ilan Univ., Israel), Richard Berkovits.

Slides:



Advertisements
Similar presentations
Superconducting properties of carbon nanotubes
Advertisements

Equations-of-motion technique applied to quantum dot models
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Spin Incoherent Quantum Wires Leon Balents Greg Fiete Karyn Le Hur Frontiers of Science within Nanotechnology, BU August 2005.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum Quench of a Kondo-Exciton SFB/TR-12 Hakan Tureci, Martin Claassen, Atac Imamoglu (ETH), Markus Hanl, Andreas Weichselbaum, Theresa Hecht, Jan von.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Non-equilibrium transport of a quantum dot in the Kondo regime near quantum phase transitions Chung-Hou Chung 仲崇厚 Electrophysics Dept. National Chiao-Tung.
Sasha Kuntsevich Nimrod Teneh Vladimir Pudalov Spin-droplet state of an interacting 2D electron system M. Reznikov Magnetic order in clean low- density.
Correlations in quantum dots: How far can analytics go?
MetalsMesoscopic Systems Expected : Observed: core level Fermi Edge Singularities in the Mesoscopic X-Ray Edge Problem Martina Hentschel, Denis Ullmo,
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
The Two Channel Kondo Effect (The breakdown of the Fermi liquid paradigm in quantum dots: theory and experiment) Department of Condensed Matter Physics.
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
Introduction to Hubbard Model S. A. Jafari Department of Physics, Isfahan Univ. of Tech. Isfahan , IRAN TexPoint fonts used in EMF. Read the.
Vyacheslavs (Slava) Kashcheyevs Collaboration: Christoph Karrasch, Volker Meden (RTWH Aachen U., Germany) Theresa Hecht, Andreas Weichselbaum (LMU Munich,
Non-Fermi liquid vs (topological) Mott insulator in electronic systems with quadratic band touching in three dimensions Igor Herbut (Simon Fraser University,
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also:
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Spin-orbit interaction in semiconductor quantum dots systems
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Flat Band Nanostructures Vito Scarola
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Mixed order phase transitions
Conductance through coupled quantum dots
D. Ferraro N. Magnoli M. Merlo
Low energy approach for the SU(N) Kondo model
Full Current Statistics in Multiterminal Mesoscopic Conductors
Tunneling through a Luttinger dot
Presentation transcript:

Population Switching and Charge Sensing in Quantum Dots: A case for Quantum Phase Transitions Moshe Goldstein (Bar-Ilan Univ., Israel), Richard Berkovits (Bar-Ilan Univ., Israel), Yuval Gefen (Weizmann Inst., Israel) Support: Adams, BINA, GIF, ISF, Minerva, SPP 1285 PRL 104, (2010)

Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects

Quantum dots “0D” systems: – Semiconductor heterostructures– Metallic grains – Carbon buckyballs & nanotubes– Single molecules Realizations : –Artificial atoms –Single electron transistors

Quantum dots: A theorist’s view R L VgVg Traditional regimes: [Review: Alhassid, RMP ‘00] – Open dots,  – Closed dots,  Last decade: intermediate dot-lead coupling,  –Interference (e.g., Fano) –Interactions (e.g., Kondo, population switching)  : level spacing;  level width

1 2 energy Level population (spinless) R L VgVg VgVg n 1, n 2    +U  , g Coulomb- blockade peak Coulomb- blockade valley 1122

VgVg n 1, n 2    +U   energy Population switching (spinless) R L [Baltin, Gefen, Hackenbroich & Weidenmüller ‘97, ‘99; Silvestrov & Imry ’00; … Sindel et al. ‘05 …]

Related phenomena Charge sensing by QPC [widely used] Phase lapses [Heiblum group: Yacoby et al. ‘95; Shuster et al. ‘97; Avinun-Kalish et al. ‘05] R L QD QPC –See also : MG, Berkovits, Gefen & Weidenmüller, PRB ‘09

Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects

Nature of the switching Is the switching abrupt? Yes ?  (1 st order) quantum phase transition No ?  continuous crossover (at T=0)

A limiting case Decoupled narrow level: [Silvestrov & Imry ‘00] –Switching is abrupt –A single-particle problem: not a QPT [Marcus group: Johnson et al. ‘04][Berkovits, von Oppen & Gefefn ‘05] free energy VgVg narrow level filled narrow level empty Many levels:

Nature of the switching Is the switching abrupt? Yes ?  (1 st order) quantum phase transition No ?  continuous crossover (at T=0, for a finite width narrow level)

Numerical results Hartree-Fock: Two solutions, switching still abrupt [Sindel et al. ’05, Golosov & Gefen `06, MG & Berkovits ‘07] FRG, NRG, DMRG: probably not [?] [Meden, von Delft, Oreg et al. ’07; MG & Berkovits, unpublished]

Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects

Basis transformation [Kim & Lee ’07, Kashcheyevs et al. ’07, Silvestrov & Imry ‘07] R L Electrostatic interaction Level widths: e.g., R L

Coulomb gas expansion (I) T: temperature;  : short time cutoff;  =  |t| 2  level width One level & lead: Electron enters/exits Coulomb gas (CG) of alternating positive/negative charges [Anderson & Yuval ’69; Wiegmann & Finkelstein ’78; Matveev ’91; Kamenev & Gefen ’97] 1/T n 1 0  – –– Fugacity

Coulomb gas expansion (II) R L Two levels & leads Two coupled CGs [Haldane ’78; Si & Kotliar ‘93] 1/T n 1, n  – – – – – – –

Coulomb gas expansion (III) CG can be rewritten as: [Cardy ’81; Si & Kotliar ‘93] 1/T 0 

RG analysis (I) Generically (no symmetries): 15 coupled RG equations [Cardy ’81; Si & Kotliar ‘93] 6 eqs. 3 eqs

Solvable in Coulomb valley: Three stages of RG flow: RG analysis (II) (I) (II) (III) Result: an effective Kondo model [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07]

Digression: The Kondo problem Realizations – Magnetic impurity – QD with odd electron number L  Problem: divergences [Kondo ’64] – susceptibility: –Similarly: resistance, specific heat … Hamiltonian – J~t 2 /U>0: exchange – h z : local magnetic field D: bandwidth (spinful)

Kondo: CG analysis 1/T SzSz 1/2 0  – –– –1/2 Anderson & Yuval [’69] : – Anisotropic model (J z ≠J xy ) – expand in J xy : Coulomb gas of spin-flips

Kondo: Phase diagram RG equations: Ferromagnetic Kondo: –impurity decoupled –susceptibility:  ~c(J)/T+… Anti-Ferromagnetic Kondo: –impurity strongly-coupled –susceptibility:  ~1/T K +… Kosterlitz- Thouless transition T K : Kondo temperature

Back to our problem … Pseudo-spin (orbital) Kondo – Anisotropic – V g changes effective level separation  switching R L R L VgVg n R, n L LL  L +U   (spinless)

Implications population switching is continuous (scale: T K ) No quantum phase transition [Kim & Lee ’07, Kashcheyevs et al. ’07, ‘09, Silvestrov & Imry ‘07] Anti-Ferromagetic Kondo model Gate voltage  magnetic field h z

What was gained? FDM Haldane on the Coulomb gas expansion: “Though an expression such as [the Coulomb gas expansion] … could be taken as the starting point of a scaling theory …, the more direct ‘poor man’s’ approach … proves simpler and more complete in practice.” [J. Phys. C 11, 5015 (1978)]

Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects

But … population switching is discontinuous : 1 st order quantum phase transition Adding a charge-sensor (Quantum Point Contact): –15 RG eqs. unchanged – Three-component charge R L QPC Kosterlitz- Thouless transition

Reminder: X-ray edge singularity Without interactions: ––– noninteracting 0 S(  )   ––– Anderson ––– Mahan Anderson orthogonality catastrophe [’67] : Mahan exciton effect [’67] : energy e Absorption spectrum: 

R L e e X-ray singularity physics (I) Virtual fluctuations:

X-ray singularity physics (I) Mahan exciton Anderson orthogonality J xy Scaling dimension: Mahan wins: Switching is continuous > vs. <1  relevant R L ee Electrons repelled/attracted to filled/empty dot (J z ):

X-ray singularity physics (II) Mahan exciton Anderson orthogonality J xy Scaling dimension: R L QPC ee e Anderson wins: Switching is abrupt <+ vs. + Extra orthogonality >1  irrelevant

A different perspective Detector constantly measures the level population Population dynamics suppressed: Quantum Zeno effect ! A sensor may induce a phase transition

Noninvasive charge sensing? continuous switching Use Friedel’s sum rule! abrupt switching LLLL LLLL R QPC L1L1 L2L2 VgVg n R, n L, g L LL  L +U   VgVg n R, n L, g L LL  L +U   R QPC L1L1 L2L2  K K [CIR: Meden & Marquardt ’06]

Perturbations First order transition  switching smeared linearly in T, t LR 1.Finite T 2. Inter-dot hopping: R L QPC

Outline Introduction Is population switching a QPT? Coulomb gas analysis A surprising twist: the effect of a charge sensor Extensions; spin effects

Related models Bose-Fermi Kondo [Kamenev & Gefen ’97, Le Hur ’04, Borda et al. ’05, Florens et al. ’07, ‘08, …] 2-impurity Kondo with z exchange [Andrei et al. ’99, Garst et al. ‘94] R L   F  B

Extensions (I) – Mahan & Anderson –Repulsion  continuous switching R L QPC Dot-lead interactions:

Extensions (II) Luttinger-liquid leads: –Repulsion  abrupt switching R L QPC Luttinger-liquid & dot-lead interaction: – Edge singularity given by CFT & Bethe ansatz [Ludwig & Affleck ’94; MG, Weiss & Berkovits, EPL ‘09] –Many novel effects even for single level, single lead [MG, Weiss & Berkovits, PRB ’05, ’07, ’08; J. Phys. Conden. Matt. ‘07; Physica E ’10; PRL ‘10]

R L Luttinger liquid parameter: g=3/4 Soft boundary conditions: Switching in a Luttinger liquid (I) Density Matrix RG calculations:

W Switching in a Luttinger liquid (II) Finite size scaling:

Conclusions Population switching: –Usually: steep crossover, no quantum phase transition –Adding a charge sensor: 1 st order quantum phase transition Laboratory for various effects: – Anderson orthogonality, Mahan exciton, quantum Zeno effect, entanglement entropy; – Kondo