Many slides from Steve Seitz and Larry Zitnick

Slides:



Advertisements
Similar presentations
Lecture 2: Convolution and edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Advertisements

Hough Transform Reading Watt, An edge is not a line... How can we detect lines ?
Edge Detection CSE P 576 Larry Zitnick
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Lecture 4 Edge Detection
Edge detection. Edge Detection in Images Finding the contour of objects in a scene.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Lecture 2: Edge detection and resampling
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
Lecture 3: Edge detection, continued
Lecture 2: Image filtering
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
The blue and green colors are actually the same.
CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lecture 10 – Edges and Pyramids 1.
Edge Detection.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30 – 11:50am.
CS559: Computer Graphics Lecture 3: Digital Image Representation Li Zhang Spring 2008.
Edge Detection Computer Vision (CS 543 / ECE 549) University of Illinois Derek Hoiem 02/02/12 Many slides from Lana Lazebnik, Steve Seitz, David Forsyth,
Discrete Images (Chapter 7) Fourier Transform on discrete and bounded domains. Given an image: 1.Zero boundary condition 2.Periodic boundary condition.
Lecture 2: Edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels.
Image Processing Edge detection Filtering: Noise suppresion.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Edges. Edge detection schemes can be grouped in three classes: –Gradient operators: Robert, Sobel, Prewitt, and Laplacian (3x3 and 5x5 masks) –Surface.
Introduction to Image Processing
CS 1699: Intro to Computer Vision Edges and Binary Images Prof. Adriana Kovashka University of Pittsburgh September 15, 2015.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection From Sandlot ScienceSandlot Science.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski, Ch 4.1.2, From Sandlot.
Instructor: S. Narasimhan
CS654: Digital Image Analysis Lecture 24: Introduction to Image Segmentation: Edge Detection Slide credits: Derek Hoiem, Lana Lazebnik, Steve Seitz, David.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
CSE 185 Introduction to Computer Vision Edges. Scale space Reading: Chapter 3 of S.
EE 4780 Edge Detection.
Edge Detection and Geometric Primitive Extraction Jinxiang Chai.
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Edge Detection.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
CSE 6367 Computer Vision Image Operations and Filtering “You cannot teach a man anything, you can only help him find it within himself.” ― Galileo GalileiGalileo.
Announcements Project 0 due tomorrow night. Edge Detection Today’s readings Cipolla and Gee (handout) –supplemental: Forsyth, chapter 9Forsyth For Friday.
COMPUTER VISION D10K-7C02 CV05: Edge Detection Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran.
Lecture 8: Edges and Feature Detection
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Finding Boundaries Computer Vision CS 143, Brown James Hays 09/28/11 Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li,
CS440 / ECE 448 – Fall 2006 Lecture #2 CS 440 / ECE 448 Introduction to Artificial Intelligence Fall 2006 Instructor: Eyal Amir TAs: Deepak Ramachandran.
Winter in Kraków photographed by Marcin Ryczek
Edge Detection Images and slides from: James Hayes, Brown University, Computer Vision course Svetlana Lazebnik, University of North Carolina at Chapel.
Miguel Tavares Coimbra
Edge Detection slides taken and adapted from public websites:
Fitting: Voting and the Hough Transform
Edge Detection CS 678 Spring 2018.
Edge Detection EE/CSE 576 Linda Shapiro.
Lecture 2: Edge detection
Jeremy Bolton, PhD Assistant Teaching Professor
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Review: Linear Systems
Dr. Chang Shu COMP 4900C Winter 2008
Edge Detection Today’s reading
Edge Detection CSE 455 Linda Shapiro.
Edge Detection Today’s reading
Lecture 2: Edge detection
Hough Transform.
Edge Detection Today’s reading
Edge Detection Today’s readings Cipolla and Gee Watt,
Lecture 2: Edge detection
Winter in Kraków photographed by Marcin Ryczek
IT472 Digital Image Processing
IT472 Digital Image Processing
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Edge Detection ECE P 596 Linda Shapiro.
Presentation transcript:

Many slides from Steve Seitz and Larry Zitnick Edge Detection CSE 455 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick

Edge Attneave's Cat (1954)

Origin of edges Edges are caused by a variety of factors surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors

Characterizing edges An edge is a place of rapid change in the image intensity function intensity function (along horizontal scanline) image first derivative edges correspond to extrema of derivative

Image gradient The gradient of an image: The gradient points in the direction of most rapid change in intensity

The discrete gradient How can we differentiate a digital image F[x,y]? Option 1: reconstruct a continuous image, then take gradient Option 2: take discrete derivative (“finite difference”)

Image gradient The gradient direction is given by: How would you implement this as a filter? The gradient direction is given by: How does this relate to the direction of the edge? The edge strength is given by the gradient magnitude

Sobel operator In practice, it is common to use: Magnitude: -1 1 -2 2 -1 -2 1 2 Magnitude: Orientation: © 2006 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Sobel operator Original Magnitude Orientation © 2006 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Effects of noise Consider a single row or column of the image Plotting intensity as a function of position gives a signal Where is the edge?

Effects of noise Difference filters respond strongly to noise Image noise results in pixels that look very different from their neighbors Generally, the larger the noise the stronger the response What can we do about it? Source: D. Forsyth

Solution: smooth first Where is the edge? Look for peaks in

Derivative theorem of convolution Differentiation is convolution, and convolution is associative: This saves us one operation: f How can we find (local) maxima of a function? Source: S. Seitz

Remember: Derivative of Gaussian filter x-direction y-direction

Laplacian of Gaussian Consider Laplacian of Gaussian operator Where is the edge? Zero-crossings of bottom graph

2D edge detection filters Laplacian of Gaussian Gaussian derivative of Gaussian How many 2nd derivative filters are there? There are four 2nd partial derivative filters. In practice, it’s handy to define a single 2nd derivative filter—the Laplacian is the Laplacian operator:

Edge detection by subtraction original

Edge detection by subtraction smoothed (5x5 Gaussian)

Edge detection by subtraction Why does this work? smoothed – original (scaled by 4, offset +128)

Gaussian - image filter delta function Laplacian of Gaussian

Canny edge detector This is probably the most widely used edge detector in computer vision J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. Source: L. Fei-Fei

The Canny edge detector original image (Lena)

The Canny edge detector norm of the gradient

The Canny edge detector thresholding

Get Orientation at Each Pixel theta = atan2(-gy, gx) -gy because y=2 is below y=1, and we typically want 90 degrees to point up

The Canny edge detector

The Canny edge detector thinning (non-maximum suppression)

Non-maximum suppression Check if pixel is local maximum along gradient direction Picture from Prem K Kalra

Compute Gradients (DoG) X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Canny Edges

Effect of  (Gaussian kernel spread/size) Canny with original The choice of depends on desired behavior large detects large scale edges small detects fine features

An edge is not a line... How can we detect lines ?

Finding lines in an image Option 1: Search for the line at every possible position/orientation What is the cost of this operation? Option 2: Use a voting scheme: Hough transform

Finding lines in an image y b b0 x m0 m image space Hough space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image y b A: the solutions of b = -x0m + y0 this is a line in Hough space y0 x0 x m image space Hough space Connection between image (x,y) and Hough (m,b) spaces A line in the image corresponds to a point in Hough space To go from image space to Hough space: given a set of points (x,y), find all (m,b) such that y = mx + b What does a point (x0, y0) in the image space map to?

Hough transform algorithm Typically use a different parameterization d is the perpendicular distance from the line to the origin  is the angle

Hough transform algorithm Basic Hough transform algorithm Initialize H[d, ]=0 for each edge point I[x,y] in the image for  = 0 to 180 H[d, ] += 1 Find the value(s) of (d, ) where H[d, ] is maximum The detected line in the image is given by What’s the running time (measured in # votes)?

Hough transform algorithm Sketch this parameterization on the board http://www.cs.utah.edu/~vpegorar/courses/cs7966/

Hough transform algorithm Sketch this parameterization on the board http://www.cs.utah.edu/~vpegorar/courses/cs7966/

Extensions compute unique (d, ) based on image gradient at (x,y) Extension 1: Use the image gradient same for each edge point I[x,y] in the image compute unique (d, ) based on image gradient at (x,y) H[d, ] += 1 What’s the running time measured in votes? Extension 2 give more votes for stronger edges Extension 3 change the sampling of (d, ) to give more/less resolution Extension 4 The same procedure can be used with circles, squares, or any other shape, How? Ask: what are the axes for a circle Hough space? What does a point in the image map to in the Hough space?