Photospheric emission from Structured Jet Hirotaka Ito Collaborators Shigehiro Nagataki YITP @ YITP Lunch Seminar 2012 5/30 Shoichi Yamada Waseda University.

Slides:



Advertisements
Similar presentations
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Advertisements

Masanori Ohno (ISAS/JAXA). HXD: keV WAM: 50keV-5MeV XIS: keV X-ray Afterglow (XIS + HXD withToO) Wide energy band ( keV) Ultra-low.
Recent Advances in our Understanding of GRB emission mechanism Pawan Kumar Outline † Constraints on radiation mechanisms ♪ High energy emission from GRBs.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
構造を持った相対論的ジェッ ト からの光球面放射 Hirotaka Ito RIKEN @コンパクト連星合体からの重力波・電磁波放射とその周辺領域 2015 /2/13 Collaborators Shigehiro Nagataki (RIKEN), Jin Matsumoto (RIKEN), Shiu-Hang.
Electron thermalization and emission from compact magnetized sources
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
1 Nanjing June 2008 A universal GRB photon energy – luminosity relationship * Dick Willingale, Paul O’Brien, Mike Goad, Julian Osborne, Kim Page, Nial.
Svetlana Jorstad Connection between X-ray and Polarized Radio Emission in the Large-Scale Jets of Quasars.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 13. Astrophysical Plasmas 02 December 2008.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Great Debate on GRB Composition: A Case for Poynting Flux Dominated GRB Jets Bing Zhang Department of Physics and Astronomy University of Nevada, Las Vegas.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
Radiative transfer and photospheric emission in GRB jets Indrek Vurm (Columbia University) in collaboration with Andrei M. Beloborodov (Columbia University)
Radiative processes during GRB prompt emission
Gamma-Ray Burst Polarization Kenji TOMA (Kyoto U/NAOJ) Collaborators are: Bing Zhang (Nevada U), Taka Sakamoto (NASA), POET team Ryo Yamazaki, Kunihito.
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
Hirotaka Ito Waseda University Collaborators Motoki Kino SISSA ISAS/JAXA ISS Science Project Office Naoki Isobe ISAS/JAXA ISS Science Project Office Nozomu.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
Amir Levinson Tel Aviv University Levinson+Bromberg PRL 08 Bromberg et al. ApJ 11 Levinson ApJ 12 Katz et al. ApJ 10 Budnik et al. ApJ 10 Nakar+Sari ApJ.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
Is GRB050509b a genuine short? Gustavo de Barros, Maria Grazia Bernardini, Carlo Luciano bianco, Roberto Guida, Remo Ruffini.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
G O D D A R D S P A C E F L I G H T C E N T E R 1 Recent GRB Results from Swift John Cannizzo/UMBC/Goddard LSC Meeting, Hanford, WA August 16, 2005 LIGO-G Z.
Hot Relics in GRB Photosphere and GeV Photon Delay Kunihito Ioka (KEK)
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Photospheric emission from Stratified Jets Hirotaka Ito RIKEN @ sngrb /12 Collaborators Shigehiro Nagataki RIKEN Shoichi Yamada Waseda Univ. Masaomi.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Insights on Jet Physics & High- Energy Emission Processes from Optical Polarimetry Eric S. Perlman Florida Institute of Technology Collaborators: C. A.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Thermal electrons in GRB afterglows, or
The signature of a wind reverse shock in GRB’s Afterglows
Observation of Pulsars and Plerions with MAGIC
Les sursauts gamma : la phase des chocs internes.
Gamma-ray bursts from magnetized collisionally heated jets
Photospheric emission from GRB jets
Prompt Emission of Gamma-ray Bursts
Photosphere Emission in Gamma-Ray Bursts
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Andrei M. Beloborodov Columbia University
Presentation transcript:

Photospheric emission from Structured Jet Hirotaka Ito Collaborators Shigehiro Nagataki YITP @ YITP Lunch Seminar /30 Shoichi Yamada Waseda University

Gamma-Ray Burst (GRB) ・ duration T ~ 10ms ー 100s ・ rapid variability δt ~ ms Most luminous explosion in the universe L γ,iso ~ erg/s Time (s) Counts/s ・ event rate ~1000/yr

Briggs ~ -0.9 β~ -2.5 ν ν^(-0.5) Band function ~ 160 keV ~ 490 keV Long GRB Short GRB α~ -1 ~ -0.5 ~ -2.3 Nava F ν ∝ ν -α ( hν< E p ) F ν ∝ ν -β ( hν> E p ) Prompt Emission Spectrum

Model for Emission Mechanism Internal Shock Model Photospheric Emission Model photosphereInternal shock External shock γ γ ・ Low efficiency for gamma-ray production ・ too hard spectrum in low energy band (α) GRB090902B Ryde et al (2009) (e.g., Rees & Meszaros 2005, Pe’er et al.2005, Thompson 2007) flaw

photosphereInternal shock External shock γ γ 低エネルギースペクトルを説明 (e.g., Rees & Meszaros 2005, Pe’er et al.2005, Thompson 2007) flaw: high energy non-thermal tail ( β ) Model for Emission Mechanism Internal Shock Model Photospheric Emission Model ・ Low efficiency for gamma-ray production ・ too hard spectrum in low energy band (α) flaw

Spine-Sheath jet Spine τ~1  0 >> 1  1 >> 1 Present Study Sheath Photosphere  0 >  1 Photon acceleration in a structured jet as a mechanism for production of non-thermal tail

Spine τ~1  0 >> 1  1 >> 1 Photons gain energy by crossing the boundary layer Sheath Photosphere Accleration region We solve the propagation of photons within the spine sheath jet  0 >  1 Present Study Photon acceleration in a structured jet as a mechanism for production of non-thermal tail Spine-Sheath jet

r Spine (θ<θ 0 ) Sheath (θ 0 <θ<θ j ) Calculation Range r in << R ph r out = 500R ph (τ~2×10 -3 ) r in (τ>>1) r out (τ<<1) Model :photospheric radius Velocity Spine-Sheath Electron number density

r Spine (θ<θ 0 ) Sheath (θ 0 <θ<θ j ) Initial Condition Inject thermal photons at the inner boundary r in (τ>>1) r out (τ<<1) Model L in = 5.4×10 52 r 8 2/3  400 8/3 L 53 1/3 (r in /10 11 cm) -2/3 erg/s T in = 0.9 r 8 1/6  400 8/3 L 53 -5/12 (r in /10 11 cm) -2/3 keV Propagation of photons are solved by Monte=Carlo method Velocity Spine-Sheath Electron number density

E max =  0 m e c 2 Klein-Nishina cut-off Spine Sheath Thermal + non-thermal tail Result  0 =400  j =1°  0 =0.5°  obs =0.3°

Comparison with Band function β= -2.3 α= -1 Structured jet model can reproduce Band function α β -2.3

Summary Structured jet can natural produce a power-law non- thermal tail above the peak energy - - Band Spectrum can be reproduced Futrure works ・ Evaluation of the polarization ・ Photon accelerations in various structures ・ Hydrodymical simulation of relativistic jet as a background fluid multi-component, shocks, turbulence