Electron acceleration by Langmuir turbulence Peter H. Yoon U. Maryland, College Park
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
LABORATORY BEAM-PLASMA EXPERIMENTS Part 1.
Alexeff et al., Hot-electron plasma by beam- plasma interaction, PRL, 10, 273 (1963). 5 keV DC electron beam interacting with plasma yields 250 keV X ray photons.
Tarumov et al., Investigation of a hydrogen plasma with “hot” electrons, Sov. Phys. JETP, 25, 31 (1967).
During the discharge phase the hot electron component was 1/10, which increased to 1/3 in the decay phase.
Levitskii and Shashurin, Spatial development of plasma-beam instability, Sov. Phys. JETP, 25, 227 (1967).
Whelan and Stenzel, Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system, Phys. Fluids, 28, 958 (1985).
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
BEAM-PLASMA INSTABILITY AND LANGMUIR TURBULENCE Part 2.
Bump-in-tail instability Langmuir Turbulence generated by beam-plasma interaction
Langmuir oscillation Ion-sound wave
t x E(x,t)E(x,t)
t x E(x,t)E(x,t) Langmuir wave
1D approxiation Ions (protons) are taken as a quasi-steady state, and the electrons are made of two components, one background Gaussian distribution, and a tenuous beam component.
Backgroun d (thermal) electrons Beam electrons
T Umeda, private communications
Bump-in-tail instability
Beam-plasma or bump-in-tail instability
Bump-on-tail instability A.A. Vedenov, E. P. Velikhov, R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961). W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962).
Bump-in-tail instability
Weak turbulence theory L. M. Gorbunov, V. V. Pustovalov, and V. P. Silin, Sov. Phys. JETP 20, 967 (1965) L. M. Al’tshul’ and V. I. Karpman, Sov Phys. JETP 20, 1043 (1965) L. M. Kovrizhnykh, Sov. Phys. JETP 21, 744 (1965) B. B. Kadomtsev, Plasma Turbulence (Academic Press, 1965) V. N. Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967) V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, 1970) V. N. Tsytovich, Theory of Turbulent Plasma (Consultants Bureau, 1977) A. G. Sitenko, Fluctuations and Non-Linear Wave Interactions in Plasmas (Pergamon, 1982)
Backscattered L wave
~ g = 1/(n D 3 ) Discrete-particle (collisional) effect
Weak turbulence theory
P. H. Yoon, T. Rhee, and C.-M. Ryu, Self-consistent generation of superthermal electrons by beam-plasma interaction, PRL 95, (2005). Long-time behavior of bump-on-tail Langmuir instability
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
SOLAR WIND ELECTRONS Part 3.
STEREO spacecraft
WIND spacecraft
2007 January 9 Linghua Wang, Robert P. Lin, Chadi Salem
By Linghua Wang, Davin Larsen, Robert Lin fe(v)fe(v) Electron Velocity Distribution
Outline Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions
CONCLUSIONS Part 4.
Beam-plasma interaction is a fundamental problem in plasma physics. Laboratory experiment shows electrons accelerated by beam-plasma interaction. Electron beam-excited Langmuir turbulence theory adequately explains the laboratory results and predict the formation of energetic tail distribution. Solar wind electrons feature energetic tail population confirming Langmuir turbulence acceleration theory.