ATLAS+ Design Concepts - FCC-hh detector magnet - Matthias Mentink Alexey Dudarev Helder Silva Leonardo Erik Gerritse Herman ten Kate FCC Detectors Workshop.

Slides:



Advertisements
Similar presentations
Panda Solenoid Timelines. General Layout constraints and HOLD POINTS.
Advertisements

Results Conclusion Methods Samples Characterization of large size co-extruded Al-Ni stabilized Nb-Ti superconducting cable Objectives Background Stefanie.
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
D2 conceptual design and field quality optimization Ramesh Gupta, BNL Slide No. 1 Nov. 13, 2013 D2 Conceptual Design and Field Quality.
Zian Zhu Superconducting Solenoid Magnet BESIII Workshop Zian Zhu Beijing, Oct.13,2001.
Study on supporting structures of magnets and blankets for a heliotron-type fusion reactors Study on supporting structures of magnets and blankets for.
K.T. McDonald March 18, 2010 LArTPC BNL 1 Magnetizing a Large Liquid Argon Detector Kirk T. McDonald Princeton University (March 18, 2010)
Large Magnetic Volumes for Neutrino Factory Detectors A.Bross ISS Detector Phone Meeting June 22, 2006.
1 Large Magnetic Volumes for Neutrino Factory Detectors A.Bross ISS Detector Phone Meeting July 3, 2006.
Progress on the MICE Cooling Channel Solenoid Magnet System
10 October 2006 MICE CM-16 at RAL 1 Distributed versus Lumped Coupling Magnets Michael A. Green and Soren Prestemon Lawrence Berkeley Laboratory, Berkeley.
K.T. McDonald June 18, 2009 DUSEL FNAL 1 Strategies for Liquid Argon Detectors at DUSEL Kirk T. McDonald Princeton University (June 18, 2009)
8/07/ J.M. Rey1 J.M. Rey CEA/DSM/DAPNIA/SACM Saclay The different (magnetic) ways to run the MICE experiment.
Detecting Particles Martin Gallacher – University of Birmingham.
Twin Solenoid Twin Solenoid - conceptual design for FCC-hh detector magnet - Matthias GT Mentink Alexey Dudarev Helder Pais Da Silva Leonardo Erik Gerritse.
A payload to test in space Superconductive Magnetic Shielding technology R. Battiston Perugia University June 2010.
Progress on the MuCool and MICE Coupling Coils * L. Wang a, X. K Liu a, F. Y. Xu a, A. B. Chen a, H. Pan a, H. Wu a, X. L. Guo a, S. X Zheng a, D. Summers.
1 Design of Solenoid and iron yoke for GLD KEK Hiroshi Yamaoka Ken-ichi Tanaka July 13, ‘05.
CD meeting R.Yamada1 Thoughts on 4CD (4 th Concept Detector) Solenoid System based on Alex Mikhailchenko’s Basic Design Ryuji Yamada October 20,
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
LCWS14 Benoit CURE - CERN/PH Dept.1 International Workshop on Future Linear Colliders October 2014 Organized by the Vinca Institute of Nuclear.
14 August Magnetic Field in the ATLAS Muon Spectrometer Masahiro Morii for the ATLAS Group Harvard University Laboratory for Particle Physics and.
ATLAS EXPERIMENT INTEGRATION TASK: SPACE MANAGEMENT Tatiana Klioutchnikova 05/06/
Precision Drift Chambers for the ATLAS Muon Spectrometer Susanne Mohrdieck Max-Planck-Institut f. Physik, Munich for the ATLAS Muon Collaboration Abstracts:
Hcal Geometry and Assembly CLIC Meeting - LAPP December 2008, 15th.
Brookhaven - fermilab - berkeley US LHC ACCELERATOR PROJECT LHC IR Quad Heaters.
Detector studies, Radiation Simulations, Organization FCC Hadron Detector Meeting July 27 th 2015 W. Riegler.
N.Delruelle (CERN)31-May-2007 Cryogenics for ATLAS and CMS Experimets N. Delruelle on behalf of AT-ECR group.
Permanent Magnet Quadrupoles for the CLIC Drive Beam Jim Clarke, Norbert Collomb, Neil Marks, James Richmond, and Ben Shepherd STFC Daresbury Laboratory,
KEK Hiroshi Yamaoka Task list for Magnet/Iron yoke Solenoid magnet Iron yoke Experimental hall and other facilities May 11, ’05.
CEA DSM Irfu - F. KIRCHER - [Seoul Workshop, Feb 16-18, 2009] 1 ILD detector magnet: LoI version F. Kircher, O. Delferrière CEA Saclay, DSM/Irfu/SACM.
Magnets and Supports Bob Wands October 20, 2006 PPD/MD/Engineering Analysis Group Fermilab 4 th Concept Detector at Fermilab October, 2006.
The CMS detector as compared to ATLAS CMS Detector Description –Inner detector and comparison with ATLAS –EM detector and comparison with ATLAS –Calorimetric.
Cost Issues Y.Sugimoto, A.Maki Estimation Procedure Get unit cost from the cost estimation for GLD(DOD) Estimate (relative) amount of return-yoke.
Baby-Mind Magnetic Module Design A. Dudarev, G. Rolando, E. Noah, H. Pais Da Silva and H.H.J. ten Kate Baby-MIND update meeting #1 July 29,
ILD solenoid magnet construction in Kitakami-site 17. December Tokusui Workshop KEK : Y.Makida, T.Okamura, Y. Sugimoto Toshiba : Nakamoto 、 Orikasa.
TD Designs for mu2e Solenoid Magnets Michael Lamm for the Mu2e Collaboration and TD/Magnet Systems Dept. All Experimenters’ Meeting January 25, 2010.
Magnet design, final parameters Paolo Ferracin and Attilio Milanese EuCARD ESAC review for the FRESCA2 dipole CERN March, 2012.
New options for the new D1 magnet Qingjin Xu
Vyacheslav Klyukhin, SINP MSU Simulation of magnetic toroids for CMS forward muon detection April 22, 2013V. Klyukhin, General Muon mtg, CERN1.
Precision Drift Chambers for the ATLAS Muon Spectrometer
Consolidation of the Booster Injection Quadrupole Magnets (part 2) A. Aloev 14 th February 2013.
FCC week March 2015 Marriott Georgetown Hotel D2 for FCC P.Fabbricatore INFN Genova D2 for FCC P.Fabbricatore & S.Farinon INFN Genova Presented.
Global Design Effort Magnetic and Mechanical FEA of SiD IRENG07 Bob Wands September 18, 2007.
GLA2011 The cryogenic systems of the LHC experiments Johan Bremer on behalf of TE/CRG, ATLAS collaboration and CMS collaboration.
Reducing the Iron in the Endcap Yoke of CLIC_SiD Benoit Curé, Konrad Elsener, Hubert Gerwig, CERN CERN, June 2014 Linear Collider Detector Magnet Meeting.
Baby MIND magnet design or “how to best magnetise a steel plate” Alexey, Etam, Gabriella, Helder, Herman Baby Mind Magnet CERN June 10, 2015.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
FCC-hh Detector Magnets Design Study Herman ten Kate C.Berriaud, B.Cure, A.Dudarev, A.Gaddi, H.Gerwig, M.Mentink, G.Rolando, H.Silva, U.Wagner, S.Klyukhin.
Update on the conductor analysis for the PANDA solenoid Gabriella Rolando Herman ten Kate Alexey Dudarev Helder Pais Da Silva 19 September
AUGUST 3, 2010 BRYCE AUSTELL UNIVERSITY OF ILLINOIS FERMILAB SIST INTERN ADVISOR: RYUJI YAMADA Muon-to-Electron Conversion Experiment (Mu2e) Detector Solenoid.
AT-ECR/C.FabreMay 31, 2007 Cryogenics for Liquid Argon Calorimeters Caroline Fabre on behalf of the ATLAS Liquid Argon Cryogenics Collaboration.
F. Kircher CLIC concept meeting 12/15/08 1 Some points about the superconducting magnet for a CLIC detector F. Kircher (CEA Saclay/DSM/Irfu/SACM) December.
Update on PANDA solenoid design and analysis Gabriella Rolando Helder Pais Da Silva Herman ten Kate Alexey Dudarev 3 November
Thermal Analysis of the Cold Mass of the 2 T Solenoid for the PANDA Detector at FAIR G. Rolando 1, H. H. J. ten Kate 1, A. Dudarev 1 A. Vodopyanov 2, L.
Interaction Region and Detector
Update on PANDA solenoid design
Magnetic System Overview Solenoid and Anti-DID
The CMS magnet superconducting coil
BINP, Sergey Pivovarov, Panda magnet meeting at GSl, June 07, 2016
Magnetic System Overview Solenoid and DID
SiD Solenoid Status and Plans
FCC-hh Detector Magnet - Evolution and New Baseline Design -
Magnet Options Forward dipoles vs. forward solenoids
MQYY: superconducting Quadrupole magnet for Hl-lhc
by M. Della Negra, P. Jenni, and T. S. Virdee
L H C A T L A S International Collaboration on the LHC Project
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
as a prototype for Super c-tau factory
Presentation transcript:

ATLAS+ Design Concepts - FCC-hh detector magnet - Matthias Mentink Alexey Dudarev Helder Silva Leonardo Erik Gerritse Herman ten Kate FCC Detectors CERN, 3 Feb

Overview  Introduction  Scaled up ATLAS concept  Angled concept  Extended End Cap Toroid concept  Conclusion 2

Introduction PropertyValue Stored energy 1.5 GJ (1.1 GJ BT + 2x 220 MJ ECT) Conductor mass 120 t BT + 2x 20 t ECT Length BT [m]25 Inner radius BT [m]4.7 Outer radius BT [m]10 Length ECT [m]5 Inner radius ECT [m]1.65 Outer radius ECT [m]4.7 Field integral η = 0 [Tm] (between conductors) 4 Field integral η = 2.44 [Tm] (between conductors) 9 Atlas toroidal field for muon detection:  Barrel Toroid (BT): open structure  End Cap Toroids: 8 coils in single cryostat 3

ATLAS+, a Scaled up ATLAS Concept PropertyValue Stored energy 51 GJ (48 GJ BT + 2x 1.6 GJ ECT) Conductor mass 4.3 kt (10x 400 t BT modules + 2x 140 t ECT) Length BT [m]52 Inner radius BT [m]7 Outer radius BT [m]15 Length ECT [m]8 Inner radius ECT [m]2.5 Outer radius ECT [m]7 Field integral η = 0 [Tm] (between conductors) 16 Field integral η = 2.44 [Tm] (between conductors) 16 Same concept as ATLAS, but higher field and more volume  More stored energy. Individual cryostats for barrel toroids. Possibility of single cryostat for each end cap toroid. 4

ATLAS+ variant - Angled Concept PropertyValue Stored energy 52 GJ (48 GJ BT + 2x 2.1 GJ ECT) Conductor mass 4.3 kt (10x 400 t BT modules + 2x 170 t ECT) Length BT [m]52 Inner radius BT [m]7 Outer radius BT [m]15 ECT inclination angle ( o )20 Field integral η = 0 (between conductors) [Tm] 16 Field integral η = 2.44 (between conductors) [Tm] 16 Reduction in peak field on conductor. Less complicated muon chamber placement, but… Blind spots at inclination angle (20 o ) 5

ATLAS+ variant - Extended End Cap Toroid Concept Reduction in magnetic field at edges:  Reduction in stored energy and total mass  More homogeneous field integral as function of η Reduced mass and length of BT modules. PropertyValue Stored energy 40 GJ (34 GJ BT + 2x 3 GJ ECT) Conductor mass 3.3 kt (10x 280 t BT modules + 20x 25 t ECT modules) Length BT [m]36 Inner radius BT [m]7 Outer radius BT [m]15 Length ECT [m]8 Inner radius ECT [m]2.5 Outer radius ECT [m]15 Field integral η = 0 [Tm] (between conductors) 16 Field integral η = 2.44 [Tm] (between conductors) 16 6

Conclusion ATLAS+ concepts:  Scaled up ATLAS concept: a proven design, we know how to make it…..  Angled ATLAS concept: significant reduction in peak magnetic field in the conductor.  Extended End Cap Concept featuring: 7 Open coil structure for both the Barrel Toroid and End Cap Toroids enabling better positioning of muon chambers around the toroids. More homogeneous field integral  Reduced stored energy for the same field integral at η = 0. Reduction in Barrel Toroid coil length and mass, but larger ECT coils. Coil units smaller, easier assembly, smaller crane loads……