Spectral characteristics of the Hellenic vertical network - Validation over Central and Northern Greece using GOCE/GRACE global geopotential models Vassilios.

Slides:



Advertisements
Similar presentations
A Comparison of topographic effect by Newton’s integral and high degree spherical harmonic expansion – Preliminary Results YM Wang, S. Holmes, J Saleh,
Advertisements

Ocean circulation estimations using GOCE gravity field models M.H. Rio 1, S. Mulet 1, P. Knudsen 2, O.B. Andersen 2, S.L. Bruinsma 3, J.C. Marty 3, Ch.
GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH M. Weigelt, W. Keller.
National report of LITHUANIA THE 4th BALTIC SURVEYORS FORUM, 2013, Ventspils, LATVIA Eimuntas Parseliunas Geodetic Institute of Vilnius Technical University.
An example of gravimetric geoid computation: The Iberian Gravimetric Geoid of 2005.
COMBINED MODELING OF THE EARTH’S GRAVITY FIELD FROM GOCE AND GRACE SATELLITE OBSERVATIONS Robert Tenzer 1, Pavel Ditmar 2, Xianglin Liu 2, Philip Moore.
Dynamic Planet 2005 Cairns, Australia August 2005
NOAA’s National Geodetic Survey USGG2009 & GEOID09: New geoid height models for surveying/GIS ACSM-MARLS-UCLS-WFPS Conference FEB 2009 Salt Lake.
Modeling Airborne Gravimetry with High-Degree Harmonic Expansions Holmes SA, YM Wang, XP Li and DR Roman National Geodetic Survey/NOAA Vienna, Austria,
G13A Towards a New Vertical Datum Daniel R. Roman 1, Xiaopeng Li 2, Simon A. Holmes 3, Vicki A. Childers 4, and Yan M. Wang 1 1. Geosciences Research.
Use of G99SSS to evaluate the static gravity geopotential derived from the GRACE, CHAMP, and GOCE missions Daniel R. Roman and Dru A. Smith Session: GP52A-02Decade.
Geoid improvement over Alaska/Yukon area by GRACE and GOCE models X Li 1, JL Huang 2, YM Wang 3, M Véronneau 2, D Roman 3 1 ERT Inc USA 2 Geodetic Survey.
Advances and Best Practices in Airborne Gravimetry from the U.S. GRAV-D Project Theresa M. Damiani 1, Vicki Childers 1, Sandra Preaux 2, Simon Holmes 3,
Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany Quality Assessment of GOCE Gradients Phillip Brieden, Jürgen Müller living planet.
1 Assessment of Geoid Models off Western Australia Using In-Situ Measurements X. Deng School of Engineering, The University of Newcastle, Australia R.
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
NKG Working Group for Geodynamics Copenhagen, 23 –24 April, Tasks of a new Working Group on Absolute Gravimetry Herbert Wilmes Federal Agency for.
Lecture 18: Vertical Datums and a little Linear Regression GISC March 2009 For Geoid96.
1 Geoid and Geoid Change: Discussion Topics Roger Haagmans, Boulder, 21October 2009.
Integration of Future Geoid Models Dan Roman and Yan M. Wang NOAA/NGS Silver Spring, MD USA December 3-4, 2008.
The National Geodetic Survey Gravity Program Benefits and Opportunities Juliana Blackwell, Director National Geodetic Survey (NGS)
Assessment of Reference Frame Stability trough offset detection in GPS coordinate time series Dragan Blagojević 1), Goran Todorović 2), Violeta Vasilić.
Data Requirements for a 1-cm Accurate Geoid
Numerical aspects of the omission errors due to limited grid size in geoid computations Yan Ming Wang National Geodetic Survey, USA VII Hotine-Marussi.
EGU General Assembly 2011, 3 rd – 8 th April 2011, Vienna, Austria EGU EIGEN-6 A new combined global gravity field model including GOCE data from.
Effect of High Resolution Altimetric Gravity Anomalies on the North America Geoid Computations Yan M. Wang and D. Roman National Geodetic Survey NOAA Montreal,
OSTST March, Hobart, Tasmania Ocean Mean Dynamic Topography from altimetry and GRACE: Toward a realistic estimation of the error field Marie-Helene.
Lecture 21 – The Geoid 2 April 2009 GISC-3325.
Progress in Geoid Modeling from Satellite Missions
AUSGeoid Richard Bean Robyn Stevens 26 May Geoid 3D surface of equal gravity (Equipotential) Not smooth like an ellipsoid Transformation needed.
Regional Enhancement of the Mean Dynamic Topography using GOCE Gravity Gradients Matija Herceg 1 and Per Knudsen 1 1 DTU Space, National Space Institute,
Full Resolution Geoid from GOCE Gradients for Ocean Modeling Matija Herceg & Per Knudsen Department of Geodesy DTU Space living planet symposium 28 June.
C.C.Tscherning, Niels Bohr Institute, University of Copenhagen. Improvement of Least-Squares Collocation error estimates using local GOCE Tzz signal standard.
Recent Investigations Towards Achieving a One Centimeter Geoid Daniel R. Roman & Dru A. Smith U.S. National Geodetic Survey GGG 2000, Session 9 The Challenge.
A comparison of different geoid computation procedures in the US Rocky Mountains YM Wang 1, H Denker 2, J Saleh 3, XP Li 3, DR Roman 1, D Smith 1 1 National.
Investigation of the use of deflections of vertical measured by DIADEM camera in the GSVS11 Survey YM Wang 1, X Li 2, S Holmes 3, DR Roman 1, DA Smith.
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Improving Regional Geoid by optimal Combination of GRACE Gravity Model and Surface Gravity Data YM Wang, DR Roman and J Saleh National Geodetic Survey.
Progress towards a common North American Geoid in 2012 Daniel Roman, Yan Wang & Xiaopeng Li National Geodetic Survey Geosciences Research Division.
Mayer-Gürr et al.ESA Living Planet, Bergen Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University.
OSTST Meeting, Hobart, Australia, March 12-15, 2007 On the use of temporal gravity field models derived from GRACE for altimeter satellite orbit determination.
ESA Living Planet Symposium 28 June - 2 July 2010, Bergen, Norway A. Albertella, R. Rummel, R. Savcenko, W. Bosch, T. Janjic, J.Schroeter, T. Gruber, J.
Nic Donnelly – Geodetic Data Analyst 5 March 2008 Vertical Datum Issues in New Zealand.
1 NGA Mission - Data – Collaboration 2009 Workshop on Monitoring North American Geoid Change 21 Oct 2009 NGA Mission - Data – Collaboration 2009 Workshop.
The OC in GOCE: A review The Gravity field and Steady-state Ocean Circulation Experiment Marie-Hélène RIO.
The use of absolute gravity data for validation of GOCE-based GGMs – A case study of Central Europe 1), 2) Walyeldeen Godah 2) Jan Krynski 2) Malgorzata.
Scientific Roadmap towards Height System Unification with GOCE 5th International GOCE User Workshop, Paris, Th. Gruber (1), R. Rummel (1), M.
An oceanographic assessment of the GOCE geoid models accuracy S. Mulet 1, M-H. Rio 1, P. Knudsen 2, F. Siegesmund 3, R. Bingham 4, O. Andersen 2, D. Stammer.
GOCE/GRACE GGM evaluation over Greece with GPS/Leveling and gravity data G.S. Vergos, V.D. Grigoriadis, I.N. Tziavos, D.A. Natsiopoulos, E.A. Tzanou.
Use of topography in the context of the GOCE satellite mission – some examples Moritz Rexer, Christian Hirt, Sten Claessens, Carla Braitenberg 5 th INTERNATIONAL.
GOCE Gravity Field Models – Overview and Performance Analysis Th. Gruber*, R. Rummel* & High Level Processing Facility (HPF) Team *Institute of Astronomical.
Integration of Gravity Data Into a Seamless Transnational Height Model for North America Daniel Roman, Marc Véronneau, David Avalos, Xiaopeng Li, Simon.
Evaluation of the Release-3, 4 and 5 GOCE-based Global Geopotential Models in North America M. G. Sideris (1), B. Amjadiparvar (1), E. Rangelova (1), J.
Initial Results of the Geoid Slope Validation Survey of 2011 Dru Smith 1, Simon Holmes 1, Xiaopeng Li 1, Yan Wang 1, Malcolm Archer-Shee 1, Ajit Singh.
GOCE geoids and derived Mean Dynamic Topography in the Arctic Ocean Ole B. Andersen & Per Knudsen. DTU Space – Copenhagen, Denmark.
ESA Living Planet Symposium, 29 June 2010, Bergen (Norway) GOCE data analysis: the space-wise approach and the space-wise approach and the first space-wise.
1 UPWARD CONTINUATION OF DOME-C AIRBORNE GRAVITY AND COMPARISON TO GOCE GRADIENTS AT ORBIT ALTITUDE IN ANTARCTICA Hasan Yildiz (1), Rene Forsberg (2),
B. Amjadiparvar(1), E. Rangelova(1), M. G. Sideris(1) , C. Gerlach(2)
European Geosciences Union, General Assembly 2009
An overview of spectral methods for the optimal processing of satellite altimetry and other data I.N. Tziavos1, M.G. Sideris2, G.S. Vergos1, V.N. Grigoriadis1,
Vertical datum unification on Iberia and Macaronesian islands with a local gravimetric geoid. First results J. Catalão(1), M. Sevilla(2) 1) University.
Dynamic Planet 2005 Cairns, Australia August 2005
Per Knudsen & Ole Andersen, DTU Space, Jerome Benveniste, ESA/ESRIN,
4. RESULTS AND DISCUSSION CONCLUSION AND RECOMMENDATIONS
A NEW HEIGHT DATUM FOR UGANDA
Chairs: H. Sünkel, P. Visser
Martin Pitoňák1, Michal Šprlák2 and Pavel Novák1
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Geoid Enhancement in the Gulf Coast Region
Advances and Best Practices in Airborne Gravimetry from the U. S
Presentation transcript:

Spectral characteristics of the Hellenic vertical network - Validation over Central and Northern Greece using GOCE/GRACE global geopotential models Vassilios D. Andritsanos 1, George S. Vergos 2, Vassilios N. Grigoriadis 2, Vassilios Pagounis 1 and Ilias N. Tziavos 2 1 Department of Civil Engineering and Surveying and Geoinformatics Engineering, Technological and Educational Institute of Athens, Greece 2 Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Greece European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014 Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions

Outline Description of the E.LE.V.A.T.I.ON project Validation methodology Test areas and data description Results Conclusions and future plans Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

E.LE.V.A.T.I.ON Project Evaluation of the HelLEnic Vertical network in the frAme of the European SysTems and Control Networks InterconnectON – Application in the areas of Attica and Thessaloniki TEI of Athens – Aristotle University of Thessaloniki – National Technical University of Athens Hellenic Vertical Network has not been connected with EVRS Validation before the connection GRACE and GOCE data provide valuable information Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Validation methodology GPS/leveling benchmarks (N GPS/Lev ) over test areas and validation using spectral enhancement approach GRACE/GOCE GGM (N i ) to some maximum degree of expansion (n 1 ) EGM2008 is used to fill-in medium and high frequency content Residual Terrain Modeling (N RTM ) effects complete the high and ultra high frequency information Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Data availability (1/4) – Test areas 2 tests areas 100 km × 100 km each – 233 benchmarks Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Data availability (2/4) – Global Geopotential Models 18 Global Geopotential Models used to their maximum d/o (satellite only – GOCE/GRACE – and combined information) EGM2008 as reference model (Pavlis et al., expansion to d/o 2160) EIGEN models (5C, 6C, 6C2 and 6C3-stat – Förste et al., 2008, 2011, 2012, 2014) GOCE models (DIR 1 – 4, Bruinsma et al., 2010, 2013 and TIM 1 – 4, Pail et al., 2010, 2011) GOCO models (01S – 03S, Pail et al., 2010; Goinginger et al., 2011; Mayer-Gürr et al., 2012) ITG-Goce02 (Schall et al. 2014) GOGRA02S (Yi et al., 2013) JYY-GOCE02S (Yi et al., 2013) Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Data availability (3/4) – High frequency (RTM effects) 3 arcsec resolution digital terrain and bathymetry model is used for the RTM effect on geoid heights the omission error is below the 1 mm level the d/o of expansion that these synthetic GOCE/GRACE GGMs now represent is at 216,000 Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions Digital terrain model from Tziavos et al European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Data availability (4/4) – Datum and reference system concepts Tide – Free system (Zero – Tide model ITG-GOCE02 was transformed to the Tide – Free system) Orthometric heights in Greece are referenced to the Mean – Tide system  conversion to Tide – Free (Ekman et al. 1989) N 0 zero-degree harmonic w.r.t. GRS80 (N 0 = m) Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (1/11) – Blunders detection Blunders identification in Attica using combination methodology Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (2/11) – Differences in Attica and Thessaloniki Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions Larger std in Thessaloniki due to rough terrain  problematic BMs A bias of 20 cm between the two areas  LVD inconsistencies European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (3/11) – Differences in Attica and Thessaloniki Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions Local characteristics depending on the d/o of each model European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (4/11) – Models validation and spectral characteristics EIGEN models over Attica  improvements below d/o 200 Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (5/11) – Models validation and spectral characteristics EIGEN models over Thessaloniki Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (6/11) – Models validation and spectral characteristics GOCE-DIR models (R3 and R4) – Both test areas Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (7/11) – Models validation and spectral characteristics GOCE-DIR and TIM models (R3 and R4) over Attica Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (8/11) – Models validation and spectral characteristics GOCE-DIR and TIM models (R4) over Attica Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (9/11) – Models validation and spectral characteristics GOCOxS models over Thessaloniki Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (10/11) – Models validation and spectral characteristics GOGRA02S model over Thessaloniki Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Results (11/11) – Models validation and spectral characteristics JYY-GOCE02S and ITG-GOCE02 models over Attica Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Conclusions – Future Plans Improvements from GOCE/GRACE data at 80 – 180 d/o band 2 cm in terms of std of the differences at Thessaloniki BMs around d/o 120 GOCE models evolution  optimization around d/o 200 Larger std of differences  dependence on the rough terrain of Thessaloniki Bias identification between Central and Northern test areas  LVD inconsistencies Vertical Datum homogeneity  computation of the W 0 in the area (IGFS – Shanghai, June - July 2014) Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014

Acknowledgement E.LE.V.A.T.I.ON. Project co-financed by the E.U. (European Social Fund) and national funds under the Operational Program “Education and Lifelong Learning 2007 – 2013” in the frame of the action “Archimedes III – Funding of research groups in T.E.I.” Session G4.2 Satellite Gravimetry: GRACE, GOCE and Future Gravity missions European Geosciences Union – General Assembly 2014 Vienna – Austria – April, 27 th to May, 2 nd 2014