   (Episodio II). Signal/Background Reaction:             0   e  e        0 e  e   0 X-section.

Slides:



Advertisements
Similar presentations
Sabino Meola Charged kaon group meeting 12 October 2006 Status of analysis.
Advertisements

26/07/2002C.Palomares / ICHEP02 Search for  b in two-photon collisions with L3 Detector at LEP Carmen Palomares CERN On behalf of L3 Collaboration.
STAR Status of J/  Trigger Simulations for d+Au Running Trigger Board Meeting Dec5, 2002 MC & TU.
Barbara Sciascia – LNF 1 K  semileptonic BR measurement B. Sciascia 4 may 2006 KpmKSL joint meeting.
Biagio Di Micco17/07/ Radiative Phi Decays Meeting 1  Status of the work Biagio Di Micco Università degli Studi di Roma 3.
Ponza 05 June 2008 Status report on       analysis F. Ambrosino T. Capussela F. Perfetto Status report on    analysis Frascati 29.
1 Search for the Flavor-Changing Neutral-Current Decay,   → p     HyangKyu Park University of Michigan, Ann Arbor for the HyperCP collaboration.
Measurement of the absolute BR(K  +  -  + ) : an update Patrizia de Simone KLOE Kaon meeting – 21 May 2009.
August 12, 2000DPF Search for B +  K + l + l - and B 0  K* 0 l + l - Theoretical predictions and experimental status Analysis methods Signal.
Search for 7-prong  Decays Ruben Ter-Antonyan on behalf of the BaBar Collaboration Tau04 Workshop, Sep 14, 2004, Nara, Japan Outline:  Introduction 
Inclusive  Production at Y(1S) Sheldon Stone Jianchun Wang Syracuse University CLEO Meeting 09/13/02.
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
Search for B     with SemiExclusive reconstruction C.Cartaro, G. De Nardo, F. Fabozzi, L. Lista Università & INFN - Sezione di Napoli.
1 Search for light Higgs in Y(1S)→ gamma lepton-pairs Nasra Sultana & Tomasz Skwarnicki.
A. Dabrowski, October Ratio(ke3/pipi0); Ratio(kmu3/pipi0) 1 “Final” Γ(Ke3) / Γ(pipi0) Γ(Kmu3) / Γ(pipi0) Γ(Kmu3) / Γ(ke3) Anne Dabrowski Northwestern.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Τ ± → π ± π + π - π 0 ν τ decays at BaBar Tim West, Jong Yi, Roger Barlow The University of Manchester Carsten Hast, SLAC IOP HEP meeting Warwick, 12 th.
Direct-Photon Production in PHENIX Oliver Zaudtke for the Collaboration Winter Workshop on Nuclear Dynamics 2006.
Jochen Dingfelder, SLAC Semileptonic Decay Studies with B A B AR Annual DOE HEP Program Review, June 5-8, 2006, SLAC B D   X c,X u.
1 Update: High energy photon pairs Vladimir Litvin, Toyoko Orimoto Caltech 04 December 2007.
F. AmbrosinoEuridice Midterm Meeting LNF 11/02/05 1 F.Ambrosino Università e Sezione INFN, Napoli for the KLOE collaboration Study of  Dalitz plot.
Biagio Di Micco13/02/ Radiative Phi Decays Meeting 1  Biagio Di Micco Università degli Studi di Roma III results.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
Guglielmo De Nardo Napoli University and INFN 7th Meeting on B Physics, Orsay, France, October 4th 2010.
22. April 2004, New Phenomena MeetingChristian Autermann - Resonant Slepton Production1 Overview R-parity violating Supersymmetry Cross section and Run.
Outline: (1) The data sample (2) Some news on the analysis method (3) Efficiency revised (4) Background revised (5) Data: spectrum + “phi-curve”
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
Study of the decay   f 0 (980)    +  -  C.Bini, S.Ventura, KLOE Memo /2004 (upd. 06/2005) C.Bini, KLOE Memo /2005 (upd. 06/2005)
CP violation measurements with the ATLAS detector E. Kneringer – University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA “Determination.
Progress on BR(K L  p + p - ) using a double-tag method A. Antonelli, M. Antonelli, M. Dreucci, M. Moulson CP working group meeting, 25 Feb 2003.
E. De LuciaNeutral and Charged Kaon Meeting – 7 May 2007 Updates on BR(K +  π + π 0 ) E. De Lucia.
K charged meeting 10/11/03 K tracking efficiency & geometrical acceptance :  K (p K,  K )  We use the tag in the handle emisphere to have in the signal.
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
Branching Ratios and Angular Distribution of B  D*  Decays István Dankó Rensselaer Polytechnic Institute (CLEO Collaboration) July 17, 2003 EPS Int.
Simone Gennai SNS, INFN-Pisa1 Radion searches in CMS A first look to  hh G. Dewhirst, L. Fano, S. Gennai, S. Nikitenko.
 0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics.
Experimental Search for the Decay K. Mizouchi (Kyoto University) (1) Physics Motivation (2) Detector (3) Selection Criteria (4) Branching Ratio (5) Background.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
Preliminary results for the BR(K S  M. Martini and S. Miscetti.
Sabino Meola Kloe meeting 10 March 2005 Status of analysis.
Dynamics of  →       F. Ambrosino T. Capussela F. Perfetto.
QCD Multijet Study at CMS Outline  Motivation  Definition of various multi-jet variables  Tevatron results  Detector effects  Energy and Position.
Progress on F  with the KLOE experiment (untagged) Federico Nguyen Università Roma TRE February 27 th 2006.
Preliminary Measurement of the Ke3 Form Factor f + (t) M. Antonelli, M. Dreucci, C. Gatti Introduction: Form Factor Parametrization Fitting Function and.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Properties of B c Meson On behalf of DØ Collaboration Dmitri Tsybychev, SUNY at Stony Brook, PANIC05, Santa Fe, New Mexico B c is ground state of bc system.
1 Absolute Hadronic D 0 and D + Branching Fractions at CLEO-c Werner Sun, Cornell University for the CLEO-c Collaboration Particles and Nuclei International.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
D. LeoneNovosibirsk, , 2006Pion Form KLOE Debora Leone (IEKP – Universität Karlsruhe) for the KLOE collaboration International Workshop.
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
Guglielmo De Nardo for the BABAR collaboration Napoli University and INFN ICHEP 2010, Paris, 23 July 2010.
M. Martemianov, ITEP, October 2003 Analysis of ratio BR(K     0 )/BR(K    ) M. Martemianov V. Kulikov Motivation Selection and cuts Trigger efficiency.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
Paper Committee: Moneti(chair?), Danko, Ehrlich, Galik 1 OCT 21, 2006.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
ICHEP 2002, Amsterdam Marta Calvi - Study of Spectral Moments… 1 Study of Spectral Moments in Semileptonic b Decays with the DELPHI Detector at LEP Marta.
Biagio Di Micco  mass measurement   mass measurement blessing of the final result Biagio Di Micco.
A. Scordo on behalf of the AMADEUS collaboration
The η Rare Decays in Hall D
Salvatore Fiore Università di Roma “La Sapienza”
Matteo Negrini Frascati, Jan 19, 2006
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
KLOE results on  decays
Search for New Physics via η Rare Decay
Presentation transcript:

   (Episodio II)

Signal/Background Reaction:             0   e  e        0 e  e   0 X-section  [  b]: 2.04     Most frequent charged  decays: BR(      ) = (22.73±0.28)  BR(      0) = (4.60±0.16)  BR(  e  e   ) = (6.8±0. 8)  /04/282

Analysis versus EVCL ALL RAD RPI KPM 09/04/283 Stream correlation for MC charged RAD investigated: run RAD, RPI & RAD, KPM & RAD & RPI

Selection Criteria (see Marek J. talk)  Event Signature:   2 PNC: |t cl -l cl /c|<5  t  Recoil photon: most energetic cluster with E   250 MeV  2 tracks closest to IP (using PCA, no vertex requirement)  Kinematical Constraints:  Two body  decay kinematics to calculate E  recoil   kinematics to calculate      : |E t -P t |<10 MeV (EtPt)  Best Photon: we choose one PNC with  <0.2 rad to the calculated   (OPAN) Main background is      0 (B:S=200:1): M(      M    Background hypothesys:  in the  0 rest frame cos     >-0.98  in the plane     versus E  good S/B separation 09/04/284

5 E    (MeV) Background rejection Main background is      0 (B:S=200:1): M(      M    Background hypothesys:  in the  0 rest frame cos       in the plane     versus E  good S/B separation     Signal Bkg cos     (   sys) Signal Bkg E    (MeV)     E    (MeV)    

  : BestPhoton 09/04/286 RADRPI Black: Pre-Selected Blue: EtPt +OPAN Green: (PI0) cos      Red: (Inside) plane     versus E  MeV RAD&RPI

  : BestPhoton, PI0 09/04/287 Black: cos     (RAD & RPI)/Selected(RAD & RPI) Red: cos     (RAD)/Selected(RAD&RPI) Blue: cos     (RPI)/Selected(RAD&RPI) MeV 

  : BestPhoton, Inside 09/04/288 Black: Inside Cut  (RAD & RPI)/ cos     (RAD & RPI) Red: Inside Cut (RAD)/cos     (RAD&RPI) Blue: Inside Cut  (RPI)/ cos     (RAD&RPI) MeV 

   09/04/289 RADRPI M  MeV) Black: Pre-Selected Blue: EtPt +OPAN Green: (PI0) cos      Red: (Inside) plane     versus E 

Cos    sys) 09/04/2810 RAD RPI Cos   Black: Pre-Selected Blue: EtPt +OPAN Green: (PI0) cos      Red: (Inside) plane     versus E 

      RAD+RPIEvent SignatureFull Selection Signal : Bkg1:10017:1 Signal58%42% Background53% L (run 2005) = 130 pb -1 N(      )  /04/2811 Efficiency study: going on…

     

Signal/Background Reaction:             (  )             0   e  e        0 e  e   0 X-section  [  b]: 6.04       /04/2813

Selection Criteria  Event Signature:   2 PNC: |t cl -l cl /c|<5  t  Recoil photon: less energetic cluster with E  >20 MeV (89%)  2 tracks closest to IP (using PCA, no vertex requirement)  Kinematical Constraints or Kinematic Fit ?:  Two body  decay kinematics to calculate E  recoil  Best Photon: we choose one PNC with  <0.2 rad to the calculated     …….. 09/04/2814

MC Simulation V00: official MC only with  -contribution V01: PMCC using the matrix element as from Gormley et al. [PRD2(1970)] V02: PMCC Pure phase space E  (MeV) 09/04/2815 V00

Comparison with  Background investigation: from      we learn how to reject      0 ; Stream versus two photon invariant mass M  (MeV) 09/04/2816 V00

E  and E  E  (MeV) E  (MeV) 09/04/2817 After Pre-Selection

Outlooks… Work on selection efficiency is going on Data-MC looks promising Preliminary investigation on  Selection to be optimize Improve MC Simulation ? QCD Anomaly  P      unitary effects via final state interactions: –WZW in the context of HLS –Chiral unitarity approach Bethe-Salpeter-equation –Omnes function 09/04/2818

SPARE 09/04/2819

 kinematics to calculate   From 2-body  decay  E  recoil: From  decay we disentangle our control sample:      0 09/04/2820

Control Sample:      0 09/04/2821

Physics Motivations Gormley et al. Phys. Rev. D2 (1970) 501 Angular distribution expected QCD Anomaly      unitary effects via final state interactions: –WZW in the context of HLS –Chiral unitarity approach Bethe-Salpeter-equation –Omnes function 09/04/2822

Past Results:  +  -  1970-BNL: Gormley et. Al Phys. Rev. D2, 501 (1970) 7250 events spectra agree with simple  -dominant model 1973: Layter et. al Phys. Rev. D7, 2565 (1973) events spectra agree with  -dominance of the  +  - final state Gormley Layter 09/04/2823

Past Results:  +  -  1975: A.Grigorian et. al Nucl. Phys. B91, 232 (1975) 474 events 1984-TASSO: 130 events 1987-ARGUS: 795 (1990: 2626) events 1987-TPC-  : 321 events 1984-PLUTO: 195 events 1990-CELLO: 586 events 1992-WA76: 401 events 1991-Serpukhov: 2491 events 1997-Crystal Barrel: 7392 events Box Anomaly evidence (independent of any assumption on  ) 1998-L3: 2123 events well described by resonant contribution (published spectra no background subtracted) CB 09/04/2824

Conclusions and Outlooks KLOE  KLOE2: unique opportunity to search for Box Anomaly       : analysis with full KLOE data set, good results from background suppression and promising MC-Data comparison       : very very preliminary work on MonteCarlo (toy!), insert element matrix in GEANFI; analysis with KLOE2 data set KLOE2 data set …. 09/04/2825  L =2.5 fb -1  L =5 fb -1   P  ·10 5 2x P   +  -  5· · ·10 5 Efficiency  40% 2·10 5 6·10 4 4· ·10 5 Efficiency  20% 3·10 4 6·10 4