1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 ) [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?”

Slides:



Advertisements
Similar presentations
Measuring film thickness using Opti-Probe
Advertisements

Light Waves and Polarization Xavier Fernando Ryerson Communications Lab
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
/18 Yasuaki Ushio Hiroshima University The result of cavity compton experiment.
Dynamics and Mechanisms of the Multiphoton Gated Photochromic Reaction of the Highly Fluorescent Diarylethene Derivatives Miyasaka Lab Kunishi Tomohiro.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
1 The Initial Photochemical Process of Retinal in Bacteriorhodopsin MIYASAKA Lab. Tetsuro KATAYAMA.
Ashida lab. Onishi Yohei
Optical Control of Magnetization and Modeling Dynamics Tom Ostler Dept. of Physics, The University of York, York, United Kingdom.
TeraHertz Kerr effect in GaP crystal
Observation of Coherent molecular oscillation : Herzberg-Teller type Wave Packet Motion in Porphyrin J-aggregates MIYASAKA Lab. Tetsuro KATAYAMA.
From microphotonics to nanophononics October 16th-28th Cargèse, France Elastic, thermodynamic and magnetic properties of nano-structured arrays impulsively.
c = km/sec I F = I 0 x (cosθ) 2.
Università Cattolica del Sacro Cuore
Optical study of Spintronics in III-V semiconductors
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
PhysicsNTHU MFTai- 戴明鳳 Lab. 22B - Polarization of Light 實驗 22B :光的偏振 I. Object ( 目的 ) Observe the polarization phenomena of light. 觀察光的偏振現象.
George R. Welch Marlan O. Scully Irina Novikova Andrey Matsko M. Suhail Zubairy Eugeniy Mikhailov M. Suhail Zubairy Irina Novikova Andrey Matsko Ellipticity-Dependent.
First year talk Mark Zentile
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Thermo-elastic properties characterization by photothermal microscopy J.Jumel,F.Taillade and F.Lepoutre Eur. Phys. J. AP 23, Journal Club Presentation.
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Controlling the thickness of CuCl thin films and improving their quality by means of MBE method Ashida lab. M1 Kamizono Kenta.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
1 Optical Properties of Materials … reflection … refraction (Snell’s law) … index of refraction Index of refraction Absorption.
Ultrabroadband terahertz generation using DAST single crystal
Photo-excited carrier dynamics revealed with terahertz pump-probe spectroscopy for opposite travelling direction of excitation pulse and terahertz pulse.
Polarized direction Part 3 Polarization of light.
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
Optical Properties of Metal Nanoparticles
Photo-induced Multi-Mode Coherent Acoustic Phonons in the Metallic Nanoprisms Po-Tse Tai 1, Pyng Yu 2, Yong-Gang Wang 2 and Jau Tang* 2, 3 1 Chung-Shan.
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
Controlling spins with light by Andrei Kirilyuk, Alexey V. Kimel, and Theo Rasing Philosophical Transactions A Volume 369(1951): September 28,
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
M.Hangyo,M.Tani,and T.Nagashima TERAHERTZ TIME-DOMAIN SPECTROSCOPY OF SOLIDS: A REVIEW International Journal of Infrared and Millimeter Waves,Vol. 26,
1 Acoustic ↔ Electromagnetic Conversion in THz Range Alex Maznev Nelson group meeting 04/01/2010.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
1 Investigation of Optical Properties n, k … index of refraction and damping  1,  2 … polarization and absorption Problems: The penetration depth of.
Chapter 21 Electromagnetic Waves. General Physics Exam II Curve: +30.
Magnetization dynamics
What happens to the current if we: 1. add a magnetic field, 2. have an oscillating E field (e.g. light), 3. have a thermal gradient H.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
WAVES Wave motion allows a transfer of energy without a transfer of matter.
Itoh Lab. M1 Masataka YASUDA
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) These PowerPoint color diagrams can only be used by.
Electromagnetic Waves and Their Propagation Through the Atmosphere
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Linear optical properties of dielectrics
Fundamental of Optical Engineering Lecture 8.  A linearly polarized plane wave with Ē vector described by is incident on an optical element under test.
Surface Plasmon Resonance
Itoh Laboratory Masataka Yasuda
Electromagnetic Waves
Introduction to materials physics #4
Introduction to materials physics #3
The Structure and Dynamics of Solids
Ch 10 Pages ; Lecture 24 – Introduction to Spectroscopy.
Topics Use birefringence to generate and quantify elliptically polarized light. Understand, measure and characterize the optical activity of syrup.
Daniel Craft, Dr. John Colton, Tyler Park, Phil White, Brigham Young University.
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
Real-time Ellipsometry on Cesium-Telluride Photocathode Formation
Multiphoton-gated cycloreversion reaction of a photochromic diarylethene derivative as revealed by femtosecond two-color and two-pulse excitation Miyasaka.
Introduction to Magneto-Optics
BAHIRDAR UNIVERSTY COLLEGE OF SCIENCE DEPARTMENT :MATERIAL SCIENCE AND ENGINNERING PRESENTETON ON: ELLIPSOMETRY INSTRUMENT PREPEARED BY :ZELALEM GETU AMSALE.
Ellipsometry Measures the amplitude and phase of reflected light
Theories and recent studies: Experimental results:
Thermal diffusivity measurement on Nb by
Presentation transcript:

1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 ) [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?” B.Koopmans, M.van Kampen et al. Phys.Rev.Lett. 85,844(2000)

2 Contents Introduction ・ Background ・ Aim of the reference Main talk ・ light, Kerr effect, and TRMOKE ・ Measurement configuration ・ Predictable signal ・ Result and Analysis (in the reference) Summary

3 Background Problem: year Clock per second CPU speed Writing speed to a RAM ・ storage (capacity, writing speed) ↓ ・ spin memory Solution: (rapid writing by using light, large capacity [lamellar magnetic layer]) 薄 層 磁 性 膜 ⇒ TRMOKE (time-resolved MO Kerr effect) is used.

4 Aim of the reference Cu 3nm Cu (111)or(001) Ni 0~15nm 1.Ni thickness 2.field 3.temperature MO signal 0 delay time 0.5ps(10sec) -12 Ultrafast demagnetization?

5 TRMOKE measurement T R M O K E Time-resolvedMagnetic optical Kerr effect 時間分解磁気光学カー効果 pulse laser time amplitude Kerr effect polarization is changed Field H reflection pump pulse

6 Polarization x → E(t) = E 1 exp(-iωt) x +E 2 Eoexp(-iωt) y ^ ^ E(t) = E o exp(-iωt) x ^ → z y x y z <<<<Linearly Polarization <<<<Elliptical Polarization : How a electromagnetic wave goes… 偏 光

7 Elliptical polarization → E(t) = E 1 exp(-iωt) x +E 2 exp(-iωt) y ^ ^ ⇔ E(t) = ½(E 1 +E 2 )exp(-iωt) (x+iy) + ½(E 1 -E 2 )exp(-iωt) (x-iy) ^ → ^ ^^ Elliptical Polarization>>>>> x y + =

8 Magnet-Optic Kerr effect Field H One of the Magnetic-Optics which contains many property of the target. Polar Kerr effect Longitudinal Kerr effect Transverse Kerr effect 極カー効果縦カー効果横カー効果

9 Reflective index N ± =n ± +iκ ± N: complex refractive index n: refractive index κ: extinction coefficient 複屈折率 屈折率 消光係数 ψ0ψ0 ψ1ψ1 ψ2ψ2 x z E 0P E 0S E 1S E 2S E 1P E 2P rP=rP= E 0P E 1P ― = ――――― tan(ψ 0 + ψ 2 ) tan(ψ 0 - ψ 2 ) rS=rS= E 0S E 1S ― = - ――――― sin(ψ 0 + ψ 2 ) sin(ψ 0 - ψ 2 ) Complex reflective index of amplitude 複素振幅反射率 (Fresnel coefficient) ^ ^ n0n0 N

10 Reflective index of amplitude for Circular Polarized light r±=r±= ――― N ± - n 0 N ± +n 0 r+:r+: for right circular light r-:r-: for left circular light ^ ^ ^ ^ ^ ≡ r + exp(iθ + ) ≡ r - exp(iθ - ) ηKηK θKθK = - ――― 2 θ + - θ - = ―――― |r + |+ ^ |r + |- ^ |r - | ^ ^ : Kerr rotation angle : Kerr ellipticity カー回転角 カー楕円率

11 Kerr rotation angle, elliptical index x y z Φ K =θ K +iη K R r η K =r /R ① Kerr rotation angle ② Kerr ellipticity :difference of phase shift:difference of reflectivity complex Kerr rotation angle R = R + + R - r = R + - R - 位相差反射率の違い

12 Kerr rotation and Magnetization θK∝MθK∝M ΦK∝MΦK∝M ηK∝MηK∝M It is known that ⇔ Kerr rotation angle is proportional to Magnetization. It is called “Magnetic Kerr effect”.

13 Measurement configuration Ti:sapph LASER (femto sec. pulse) probe line PEM pump line photodiode delay stage target polarizer to amplifier target pump pulseprobe pulse delay time ⇒ relaxation process can be measured

14 In this paper… complex Kerr rotation Ψ=Ψ’+ iΨ’’ Ψ’: Kerr rotation angle Ψ’’: ellipticity ⊿ Ψ=Ψ – Ψ 0 Ψ 0 : original Kerr effect value ⊿ Ψ’/Ψ’= ⊿ Ψ’’/Ψ’’ ~⊿ M/M

15 Result A Comparison of the induced ellipticity ( ⊿ ψ’’/ψ 0 ’’, open circles) and rotation ( ⊿ ψ’/ψ 0 ’, filled diamonds) as a function of pump-probe delay time. It is strange that the changing of the both ratio which don’t same reaction if it is because of magnetism.

16 Result B (a)(b) dependence on the applied field Instantaneous decrease of ΔΨ’’ doesn’t relate to applied field. delay 1ps 200ps 0ps

17 Result C (c)(d) Temperaure dependence at 4.6nm and no applied field. (d) is well explained by a thermal softening of the effective magnetic potintial. delay 1ps 200ps0ps Pay attention to the scale of y.

18 Summary ☆ An instantaneous demagnetization is unlikely. ☆ Rough estimate of the spin relaxation is ps, and may be explained by a highly efficient spin-lattice relaxation. ☆ We should pay attention to the Kerr effect which is not always the reaction of magnetism.

19

20 Measurement method

21 Argument for ultrafast No H dependence and only a relatively weak T and d Ni dependence. state filling effects may well account for the initial response in the TRMOKE experiments. ↓

22 Argument for subnano signal Surprisingly appeared after 30ps. strong dependence on applied field. This can identified the oscillations as a precession of M. An intuitive illustration of the process is found by solving the Landau-Lifshitz-Gilvert equation in the limit of weak damping. ↓

23 N ± =n ± +iκ ± N: complex refractive index n: refractive index κ: extinction coefficient α ± =2ωκ ± /c 複屈折率 R r 屈折率 消光係数 α: absorption coefficient ω: frequency c: speed of light 吸収係数 周波数光速 η F =ωΔκ /2c η F : Faraday elliptical index ファラデー楕円率 (=r /R) R = R + + R - r = R + - R -Calculation

24 pump light (pulse laser) probe light (pulse laser) TRMOKE measurement

25 Kerr effect and Magnetization tanΦK = = ――――――――――――――― ――――――――――――――― √ε xx (cosψ0 + √ε xx cosψ2)√ ε xx (cosψ2 + √ε xx cosψ0) ε xy cosψ0 permittivity 誘電率 ※ polar Kerr effect εij = εij(M) ⇒ change of Kerr effect depends on magnetization.

26 Result D (e)(f) Ni thickness dependence at 300K and 2800Oe(e) and 0Oe(f). With in a couple of picoseconds the excess energy rapidly diffuses out of the Ni film.

27 ☆ On about 100ps time scale, they have observed optically induced spin movement.