Oxydo-reducteur systems and the thiol-dependent antioxidant equipment in Melampsora Benjamin Selles, Nicolas Rouhier, Eric Gelhaye.

Slides:



Advertisements
Similar presentations
AGEING CAN BE DEFINED AS THE PROGRESSIVE LOSS OF FUNCTION ACCOMPANIED BY DECREASING FERTILITY AND INCREASING MORTALITY.
Advertisements

Slide 1: Powerpoint animation of reactive oxygen generation from the mitochondrial electron transport chain (ETC). 1 st mouse click: electron transport.
Oxidative stress in seaweeds Jonas COLLÉN UMR 7139 –Catherine BOYEN Végétaux marins et biomolécules Station Biologique de Roscoff.
Pentose Phosphate Pathway Generation of NADPH and Pentoses COURSE TITLE: BIOCHEMISTRY 2 COURSE CODE: BCHT 202 PLACEMENT/YEAR/LEVEL: 2nd Year/Level 4, 2nd.
BIOLOGICAL ROLE OF OXYGEN
ISCHAEMIA, REPERFUSION, FREE RADICAL REACTIONS
Antioxidant Enzymes Maria Holmstrom Qiang Zhang Nicole Milkovic Erin Rosenbaugh.
Oxidants and Aging Rolf J. Mehlhorn Lawrence Berkeley Laboratory
Petra Bergstrom, Xu Zhang, Aja Harris and Ben Arentson
Heavy metals contribute to oxidative stress in algae Enue Sicairos Fresh Water and Marine Algae.
1.) fate of xenobiotic -- central role of metabolism Uptake/Transport > Metabolism > Excretion Or Storage 2.) xenobiotic converted.
Oxidative Stress Concepts Donald Becker Redox Biology Center University of Nebraska Graduate Course 2214/938 (KI/UNL) June 14, 2010.
Oxidative Stress.
Biologically Relevant Thiol Modifications Effects on Protein Function
Antioxidants & Free radicals. What are Reactive Oxygen Species?  ROS also known as Free oxygen radicals  Any molecule with an unpaired electron 
The respiratory chain: a strategy to recover energy The mitochondrial electron transport chain functioning and control Oxidative phosphorylation Russian.
Biotransformation Xenobiotic metabolism “Essentials of Toxicology” by Klaassen Curtis D. and Watkins John B Chapter 6.
Non-metalic Elements.
OXIDATIVE PROTEIN FOLDING IN VITRO: A STUDY OF THE COOPERATION BETWEEN QUIESCIN- SULFHYDRYL OXIDASE AND PROTEIN DISULFIDE ISOMERASE PUMTIWITT C. RANCY.
Chalcogen (‘kal-kă-jěn) chemistry and biochemistry: The many faces of O, S, and Se in proteins and enzymes Garry R. Buettner and Freya Q. Schafer Free.
Explain how O2 is both essential to life and toxic
Oxidative Stress and Atherosclerosis
Chapter 18 Oxidative phosphorylation  the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2 to O 2 by a series.
Analytical Assessment of Thiols in Biological Systems Henry Jay Forman University of California, Merced.
Figure 1. Current concepts of how drought increases the generation of reactive oxygen species (ROS) in photosynthesis. A. Cartoon of leaf section in well-watered.
The most important structural feature of an atom for determining behaviour is the number of electrons in the outer shell. A substance that has a full.
“Other” detoxication mechanisms P-glycoprotein: ATP-dependent carrier that removes molecules from cells Multidrug resistance associated protein MDR Multispecific.
Supplementary teaching slides for: Generating disulfides in multicellular organisms: emerging roles for a new flavoprotein family Colin Thorpe and Donald.
صدق الله العظيم الروم ـ 54 Visible light and infra red RADIATION Non-ionizing radiation Ionizing radiation Particulate Alpha-, Beta-particles & Neutrons.
UMR 1136 INRA/UHP Tree-microbes Interactions “Physiology and functional genomic of transporters” team Fungal pathogen : Melampsora larici-populina Populus.
1.Chemistry of reactive oxygen species (ROS) 2. Sources, defense mechanisms and pathological consequences 3. A survey of pathological conditions connected.
Coordination of Intermediary Metabolism. ATP Homeostasis Energy Consumption (adult woman/day) – kJ (>200 mol ATP) –Vigorous exercise: 100x rate.
Minerals as co-ezymes Dr. Shariq Syed Shariq AIKC/SYB/2014.
Roles of ER Rough Ribosomes synthesize excreted proteins  Stored in cisternae or vesicle Modify proteins  Glycosylation of proteins Delivery of membrane.
February 6, 2009Elias Arnér ”Redox cycling” — basic concepts of redox biology Elias Arnér, MD PhD Division of Biochemistry Medical Biochemistry and Biophysics.
Twelfth lecture PROTECTIONREPAIRREGENERATION GENETICS Reduce concentration of reactive intermediates Restore molecular function Stimulate proliferation.
T O X Y G E N X I C There is no reading assignment for this section.
Detoxification Chemicals entering body (mostly via food) must pass through liver.
Oxidant Mechanisms in Response to Ambient Air Particles Beatriz González-Flecha Department of Environmental Health Harvard School of Public Health Boston,
بسم الله الرحمن الرحيم.
Inflammation – Transitioning From Macro to Micro Presenter: Ee Phie Tan University of Kansas Medical Center.
CYTOCHROMES M.Prasad Naidu MSc Medical Biochemistry,
Biochemical Basis of CVD:Part-1 Role of Free radicals & Antioxidants
The nature of free radicals
Lipid Peroxidation.
بسم الله الرحمن الرحيم.
Metabolism & Detoxification
Signaling by Keap1/Nrf2 mediates the electrophile stress response
Signaling by Keap1/Nrf2 mediates the electrophile response
Mechanism of Cell Injury
Hiroshi Tamura, M. D. , Ph. D. , Yasuhiko Nakamura, M. D. , Ph. D
Mitochondria, Oxidants, and Aging
Do reactive oxygen species play a role in myeloid leukemias?
Gianluca Tell, Carlo Vascotto, Claudio Tiribelli  Journal of Hepatology 
Cells have thousands of different types of enzymes.
Physiological Roles of Mitochondrial Reactive Oxygen Species
ROS Function in Redox Signaling and Oxidative Stress
by Sean X. Gu, Jeff W. Stevens, and Steven R. Lentz
ROS Are Good Trends in Plant Science
How Are Proteins Reduced in the Endoplasmic Reticulum?
Antioxidants & Free radicals
Mammalian Mitochondria and Aging: An Update
The production of reduced or oxidized glutathione can occur at various stages during the formation of native disulphide bonds. The production of reduced.
A “Reductionist” View of Cardiomyopathy
Metabolism of reactive species
Oxidative Stress in the Pathogenesis of Skin Disease
Volume 45, Issue 3, Pages (February 2012)
Darcy L. Johannsen, Eric Ravussin  Cell Metabolism 
Hydrogen Peroxide Sensing and Signaling
WBCs Metabolism By Dr. Samar Kassim.
Presentation transcript:

Oxydo-reducteur systems and the thiol-dependent antioxidant equipment in Melampsora Benjamin Selles, Nicolas Rouhier, Eric Gelhaye

Oxygen is essential, but highly toxic Formation of reactive oxygen species (ROS) due to electron transport chains and oxidase functioning Release of ROS by plants as defense mechanism against pathogens Diffusion within cells : importance to have an antioxidant equipment in all sub-cellular compartments Oxydo-reducteur systems and the thiol- dependent antioxidant equipment in Melampsora

ROS formation

Superoxide and peroxide scavenging Catalases : haem peroxidase (peroxisomes) Thiol peroxidases : haem free thiol dependent peroxidases peroxiredoxins & glutathione peroxidases some specific glutathione-S-transferases Methionine sulfoxide reductases : indirect massive detoxification through MetSO reduction ROOH +ROH+ H2OH2O RSH 2 RS 2 + MetSO +Met+ H2OH2O RSH 2 RS 2 + H2O2H2O2 2H 2 O + O 2 H 2 O 2 + H 2 O 2 Superoxide dismutases H 2 O H e -

SOD, catalases, thiol-peroxidases, methionine sulfoxide reductases

Thiol peroxidase phylogenetic tree MlpPrxQ PrxQ 2-cysPrx 1-cysPrx Mlp1-cys PrxII MlpPrxII Gpx MlpGpx

Methionine sulfoxide reductases phylogenetic tree MlpMsrB MlpMsrA

Glutathione-S-transferases ► Complex and widespread superfamily ► Share thioredoxin fold ► Prominent roles :  phase II detoxication enzymes  Glutathione peroxidase  Nitrogen metabolism… ► Poorly characterized in fungi

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure 1 4 : oxidative stress, Glutathione peroxidase, nitrogen metabolism regulation

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure : Elongation factor 2 1

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure : Glutathione peroxidase

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure 1 4 1: Dihydroascorbate reductase, thiol transferase 1 2 1

A. nidulans (AN10695) L. bicolor (LACBI ) C. cinereus (CC1G ) P. chysosporium (EU791893) P. chysosporium (Phchr7168) P. chysosporium (Phchr7169) N. crassa (NCU00549) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr3911) P. chrysosporium (Phchr6880) P. chrysosporium (Phchr6881) L. bicolor (LACBI ) N. crassa (NCU ) L. bicolor (LACBI ) A. nidulans (AN3299) P. chrysosporium (Phchr6766) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr6683) A. nidulans (AN4905) N. crassa (NCU04109) A. nidulans (AN9299) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr503) A. nidulans (AN3255) N. crassa (NCU05780) P. chrysosporium (Phchr140156) P. chrysosporium (Phchr137250) P. chrysosporium (Phchr2269) P. chrysosporium (Phchr2266) P. chrysosporium (Phchr140259) P. chrysosporium (Phchr140271) P. chrysosporium (Phchr2268) P. chrysosporium (Phchr128511) S. cerevisiae (YNL229C) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) L. bicolor (LACBI ) C. cinereus (CC1G ) C. cinereus (CC1G ) P. chrysosporium (Phchr7971) L. bicolor (LACBI ) L. bicolor (LACBI ) S. cerevisiae (YLL060C) A. nidulans (AN10038) A. nidulans (AN1595) A. nidulans (AN6563) N. crassa (NCU03826) S. cerevisiae (YKL081W) S. cerevisiae (YPL048W) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr39727) S. cerevisiae (YGR201C) A. nidulans (AN9304) N. crassa (NCU ) A. nidulans (AN0629) N. crassa (NCU05706) C. cinereus (CC1G ) L. bicolor (LACBI ) S. cerevisiae (YIR038C) A. nidulans (AN10273) N. crassa (NCU04368) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (EU791894) P. chrysosporium (Phchr126388) S. cerevisiae (YGR154C) S. cerevisiae (YKR076W) S. cerevisiae (YMR251W) A. nidulans (AN5831) N. crassa (NCU09570) A. nidulans (AN10379) A. nidulans (AN2592) A. nidulans (AN2948) N. crassa (NCU02888) A. nidulans (AN8942) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) L. bicolor (LACBI ) P. chrysosporium (Phchr5119) P. chrysosporium (Phchr5118) P. chrysosporium (Phchr5122) P. chrysosporium (Phchr5300) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr7058) L. bicolor (LACBI ) A. nidulans (AN6612) N. crassa (NCU04150) S. cerevisiae (YAL025C) C. cinereus (CC1G ) L. bicolor (LACBI ) P. chrysosporium (Phchr137531) N. crassa (NCU ) S. cerevisiae (YAL003W) L. bicolor (LACBI ) P. chrysosporium (Phchr1288) L. bicolor (LACBI ) 0.1 Cluster3/Omega-like Ure2p Cluster 2 GTT2 EF1B Cluster1/GTT1 Omega Etherases MAK16 Figure ? 1

Oxidation Reduction SH Disulfide bond formation, reduction, isomerisation GRX TRX, GRX SOX PDI Regulation of protein folding, activity 1.Spontaneous (with oxygen) 2.Catalyzed by SOX 3.Concomitant to a reducing activity S S SH S S SSG SH CxxC/S redox centers

PRX GPX ROS Grx GR GSH NTR Trx NADPH Msr Trx S-SG ROS

Disulfide bond reduction by glutaredoxins & thioredoxins

MlpTrx4 MlpTrx1, 2, 3

MlpGrx1.1, 1.2 MlpGrx 2.2 MlpGrx 5 MlpGrx 2.1 MlpGrx 4 Trx/Grx domains CGFS Fe/S cluster formation CGFS Dithiol CPYC CPYS

TRX Erv1, TRX and CytC interaction in IMS; H 2 O production Oxidation and isomerization by QSOX (Erv2 for fungi) and PDI on unfolded proteins Erv1 and TRX interaction in IMS; H 2 O 2 production Disulfide bond formation by sulfhydryl oxidases and isomerisation by protein disulfide isomerases

SOX (ScErv1 like) and Erv2 First discovered in S cerevisiae and was essential for respiration and vegetative growth, Intracellular localisation is: IMS (SOX /scErv1 like) ER (Erv2, Fungi) Mitochondrial biogenesis Protein folding Cytosolic Fe-S protein maturation QSOX QSOX1 was initially identified from quiescent human fibroblasts and his Intracellular localisation is: ER, Golgi, secretory granules and are located at the cell surface Folding and regulation of secreted and parietal proteins PDI and PDI like First isolated from liver in 1963 Intracellular localisation is: ER Folding of proteins by isomerization of disulfide bonds Protein folding CXXC N C Domaine TRX 1Domaine TRX 2 CXXC N C Domaine TRX 1 Domaine TRX 2 CXXC N C Domaine TRX Classe 1 Classe 2 Classe 5

Comparative genomic with other sequenced fungi

Fungus scErv2 like QSOX ( HsQuiecin like) Plants Mammalian SOX (scErv1 like) Mammalian Plants Basidiomycete Ascomycete |Mellp (e_gw ) Mellp (e_gw )

Ascomycete Basidiomycete Asc PDI class 2 PDI class 1 PDI class 5 EuGene estExt_fgenesh2_pg.C_ estExt_fgenesh2_pg.C_ EuGene

H2O2H2O2 SOD OH. Fe 2+, Cu 2+ Fenton reaction H 2 O + 1/2O 2 Cat NO. OONO - H2OH2O Sensing by TF Trx, Tpx NO 2 Tpx, Grx, GST RSNORSH Tpx Trx? Protein thiol oxidation ROS/RNS sensing and degradation R(SH) 2 RSSR, RSSR’, R(S) 2 RSSG RSOH GSH Grx, Srx?Trx, Grx Grx? Trx, Grx RSO 2 H RSO 3 H Srx PL-OOH Tpx PL Conclusions sulfenic sulfinic sulfonic

H2O2H2O2 SOD OH. Fe 2+, Cu 2+ Fenton reaction H 2 O + 1/2O 2 Cat NO. OONO - H2OH2O Sensing by TF Trx, Tpx NO 2 Tpx, Grx, GST RSNORSH Tpx Trx? Protein thiol oxidation ROS/RNS sensing and degradation R(SH) 2 RSSR, RSSR’, R(S) 2 RSSG RSOH GSH Grx, Srx?Trx, Grx Grx? Trx, Grx RSO 2 H RSO 3 H Srx PL-OOH Tpx PL Conclusions sulfenic sulfinic sulfonic

Heme- thiolate Haloperoxidases Hofrichter and Ulrich, 2006

Pfam 1328: Peroxidase_2 Peroxidase, family 2. The peroxidases in this family do not have similarity to other peroxidases.

Mlp Prx 12 isoforms Peroxidase class II (Peroxibase) All predicted secreted (target P) Function ??