Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January,

Slides:



Advertisements
Similar presentations
2.1 Inductive Reasoning Ojectives:
Advertisements

Using Inductive Reasoning to Make Conjectures 2-1
Sec 2-1 Concept: Use Inductive Reasoning Objectives: Given a pattern, describe it through inductive reasoning.
Do Now Try to extend the following patterns. What would be next? 1.January, March, May …. 2.7, 14, 21, 28, …. 3.1, 4, 9, 16, …. 4.1, 6, 4, 9, 7, 12, 10,
Notes 1.1.
Lesson 2.1 Inductive Reasoning in Geometry
Objectives Students will…
Using Inductive Reasoning to Make Conjectures
Geometry Using Inductive reasoning to Make Conjectures
When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process.
Inductive Reasoning.  Reasoning based on patterns that you observe  Finding the next term in a sequence is a form of inductive reasoning.
What is Critical Thinking?
Patterns and Inductive Reasoning
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Using Inductive Reasoning to Make Conjectures 2-1
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Using Inductive Reasoning to Make Conjectures 2-1
Patterns & Inductive Reasoning
Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Mrs. McConaughyGeometry1 Patterns and Inductive Reasoning During this lesson, you will use inductive reasoning to make conjectures.
1.2 Patterns and Inductive Reasoning. Ex. 1: Describing a Visual Pattern Sketch the next figure in the pattern
1.2 Inductive Reasoning. Inductive Reasoning If you were to see dark, towering clouds approaching what would you do? Why?
Patterns, Inductive Reasoning & Conjecture. Inductive Reasoning Inductive reasoning is reasoning that is based on patterns you observe.
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Warm Up Boxed In Three boxes contain two coins each. One contains two nickels, one contains.
1.1 Patterns and Inductive Reasoning
Chapter Using inductive reasoning to make conjectures.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
Entry Task Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Lesson 1.2 Inductive Reasoning Pages Observe Look for patterns Develop a hypothesis (or conjecture) Test your hypothesis.
Megan FrantzOkemos High School Math Instructor.  Use inductive reasoning to identify patterns and make conjectures.  Determine if a conjecture is true.
2.1 Inductive Reasoning Objectives: I CAN use patterns to make conjectures. disprove geometric conjectures using counterexamples. 1 Serra - Discovering.
2.1 Using Inductive Reasoning to Make Conjectures.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Lesson 2 – 1 Inductive Reasoning and Conjecture
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )
Patterns and Inductive Reasoning. Inductive reasoning is reasoning that is based on patterns you observe. If you observe a pattern in a sequence, you.
Lesson 1-7 Inductive Reasoning. Inductive Reasoning – making conclusions based on patterns you observe. Conjecture – conclusion you reach by inductive.
Warm Up 1.) Adds one more side to the polygon. 2.)
2.1 Inductive Reasoning Essential Question:
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
02-2: Vocabulary inductive reasoning conjecture counterexample
OPENER.
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Vocabulary inductive reasoning conjecture counterexample
2.1 Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Five step procedure for drawing conclusions.
Patterns and Inductive Reasoning
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Notes 2.1 Inductive Reasoning.
Using Inductive Reasoning to Make Conjectures
Patterns & Inductive Reasoning
Using Inductive Reasoning to Make Conjectures 2-1
Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
2-1 Inductive Reasoning and Conjecture
Chapter 1 Basics of Geometry.
4.2 Using Inductive Reasoning
Presentation transcript:

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January, March, May,... The next month is July. Alternating months of the year make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1B: Identifying a Pattern 7, 14, 21, 28, … The next multiple is 35. Multiples of 7 make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1C: Identifying a Pattern In this pattern, the figure rotates 90° counter- clockwise each time. The next figure is.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 1 Find the next item in the pattern 0.4, 0.04, 0.004, … When reading the pattern from left to right, the next item in the pattern has one more zero after the decimal point. The next item would have 3 zeros after the decimal point, or

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures inductive reasoning conjecture counterexample Vocabulary

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Inductive reasoning is when several examples form a pattern and you assume the pattern will continue. A statement you believe to be true based on inductive reasoning is called a conjecture.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Inductive Reasoning 1. Look for a pattern. 2. Make a conjecture. 3. Prove the conjecture or find a counterexample.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Complete the conjecture. Example 2A: Making a Conjecture The sum of two positive numbers is ?. The sum of two positive numbers is positive. List some examples and look for a pattern = = = 700

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 2 The product of two odd numbers is ?. Complete the conjecture. The product of two odd numbers is odd. List some examples and look for a pattern. 1  1 = 1 3  3 = 9 5  7 = 35

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures To show that a conjecture is false, you have to find only one example in which the conjecture is not true. This case is called a counterexample. To show that a conjecture is always true, you must prove it. A counterexample can be a drawing, a statement, or a number.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 4a For any real number x, x 2 ≥ x. Show that the conjecture is false by finding a counterexample. Let x = The conjecture is false. Since =, ≥

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Show that the conjecture is false by finding a counterexample. Example 4C: Finding a Counterexample The monthly high temperature in Abilene is never below 90°F for two months in a row. Monthly High Temperatures (ºF) in Abilene, Texas JanFebMarAprMayJunJulAugSepOctNovDec The monthly high temperatures in January and February were 88°F and 89°F, so the conjecture is false.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 4c The radius of every planet in the solar system is less than 50,000 km. Show that the conjecture is false by finding a counterexample. Planets’ Diameters (km) MercuryVenusEarthMarsJupiterSaturnUranusNeptune ,10012, ,000121,00051,10049,500 Since the radius is half the diameter, the radius of Jupiter is 71,500 km and the radius of Saturn is 60,500 km. The conjecture is false.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Exit Slip Find the next item in each pattern , 5, -8, 11, … Complete the conjecture. 2. The sum of two even numbers is…

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Homework: -Pg. 77 #1-5, 7-8, 11-13