Patterns, Inductive Reasoning & Conjecture. Inductive Reasoning Inductive reasoning is reasoning that is based on patterns you observe.

Slides:



Advertisements
Similar presentations
Sec 2-1 Concept: Use Inductive Reasoning Objectives: Given a pattern, describe it through inductive reasoning.
Advertisements

Geometry Section 1.1 Patterns and Inductive Reasoning
1-1 Patterns and Inductive Reasoning
Notes 1.1.
2-1 Patterns and Inductive Reasoning
Inductive Reasoning.  Reasoning based on patterns that you observe  Finding the next term in a sequence is a form of inductive reasoning.
Lesson 1-1 Patterns and Inductive Reasoning. Ohio Content Standards:
Geometry Vocabulary 1A Geometry, like much of mathematics and science, developed when people began recognizing and describing patterns. In this course,
Honors Geometry Section 1.0 Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
GEOMETRY – P7. HONORS GEOMETRY – P4 Bellwork – PSAT Question (C) 30.
Using Patterns and Inductive Reasoning Geometry Mr. Zampetti Unit 1, Day 3.
Geometry Notes 1.1 Patterns and Inductive Reasoning
Lesson 1-1: Patterns & Inductive Reasoning 8/27/2009.
Reasoning Strategies Goal: To be able to identify a deductive or inductive reasoning strategy State the hypothesis and conclusion of deductive statements.
Inductive/Dedu ctive Reasoning Using reasoning in math and science.
Properties and Numbers 1.4. Deductive Reasoning Using facts, properties or rules to reach a valid conclusion Conjecture: statement that could be true.
2.1 Patterns and Inductive Reasoning 10/1/12 Inductive reasoning – reasoning based on patterns you observe. – You can observe patterns in some number sequences.
2-1 Patterns and Inductive Reasoning. Inductive Reasoning: reasoning based on patterns you observe.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
C HAPTER 1 T OOLS OF G EOMETRY Section 1.1 Patterns and Inductive Reasoning.
Lesson 1-1: Patterns & Inductive Reasoning
Thinking Mathematically Problem Solving and Critical Thinking.
1 1-1 Patterns and Inductive Reasoning Objectives: Define: –Conjectures –Inductive reasoning –Counterexamples Make conjectures based on inductive reasoning.
Mrs. McConaughyGeometry1 Patterns and Inductive Reasoning During this lesson, you will use inductive reasoning to make conjectures.
Review and 1.1 Patterns and Inductive Reasoning
1.2 Inductive Reasoning. Inductive Reasoning If you were to see dark, towering clouds approaching what would you do? Why?
1.1 Patterns and Inductive Reasoning
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
Logic Inductive Reasoning Reasoning based on patterns you observe Example: What is the next number in the sequence 2, 4, 6, 8…?
Entry Task Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Review Examples. 1.1 Patterns and Inductive Reasoning “Our character is basically a composite of our habits. Because they are consistent, often.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning.
Lesson 1.2 Inductive Reasoning Pages Observe Look for patterns Develop a hypothesis (or conjecture) Test your hypothesis.
Megan FrantzOkemos High School Math Instructor.  Use inductive reasoning to identify patterns and make conjectures.  Determine if a conjecture is true.
1 LESSON 1.1 PATTERNS AND INDUCTIVE REASONING. 2 Objectives To find and describe patterns. To use inductive reasoning to make conjectures.
2.1 Inductive Reasoning and Conjecture. Objectives Make conjectures based on inductive reasoning Find counterexamples Describing Patterns: Visual patterns.
2.1 Using Inductive Reasoning to Make Conjectures.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Chapter 1 Problem Solving Section 1-1 The Nature of Mathematical Reasoning Objectives: Identify and explain differences between types of reasoning Use.
Patterns and Inductive Reasoning
Section 2.1: Use Inductive Reasoning Conjecture: A conjecture is an unproven statement that is based on observations; an educated guess. Inductive Reasoning:
Entry Task P. 82 – Blue Box LT: I can observe patterns and reach a conclusion based on those patterns.
Patterns and Inductive Reasoning. Inductive reasoning is reasoning that is based on patterns you observe. If you observe a pattern in a sequence, you.
Lesson 1-7 Inductive Reasoning. Inductive Reasoning – making conclusions based on patterns you observe. Conjecture – conclusion you reach by inductive.
Warm Up 1.) Adds one more side to the polygon. 2.)
Inductive and Deductive Reasoning
1-1 Patterns and Inductive Reasoning
3 – 6 Inductive Reasoning.
2-1 Patterns and Inductive Reasoning
CST 24 – Logic.
Find a pattern for each sequence
Geometry Chapter 2 REASONING and PROOF.
Patterns and Inductive Reasoning
2.1 Using Inductive Reasoning to Make Conjectures
Five step procedure for drawing conclusions.
Warmup (Short Answer) Go into Socrative App
Patterns and Inductive Reasoning
2.1 Patterns and Inductive Reasoning
Chapter 2: Reasoning in Geometry
2-1 Inductive Reasoning.
2.1 Inductive Reasoning Objectives:
2.2 Patterns & Inductive Reasoning
PATTERNS AND INDUCTIVE REASONING
Notes 2.1 Inductive Reasoning.
Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
Lesson 1-1 Patterns and Inductive Reasoning
2-1 Inductive Reasoning and Conjecture
4.2 Using Inductive Reasoning
Presentation transcript:

Patterns, Inductive Reasoning & Conjecture

Inductive Reasoning Inductive reasoning is reasoning that is based on patterns you observe.

You Try!

Conjecture A conclusion you reach using inductive reasoning.

You Try! What conjecture can you make about the twenty-first term in R, W, B, R, W, B,... ?

You Try! What conjecture can you make about the first 30 odd numbers?

Counterexamples Not all conjectures will turn out to be true, you should always test your conjecture, to prove a conjecture false you only need to find one counterexample. Counterexample is an example that shows a conjecture is incorrect.

You Try! Write a counterexample for each conjecture. –If a flower is red it is a rose. –One and only one plane exists through any three points –When you multiply a number by three the product is divisible by six.