Doc.: IEEE 802.11-05/0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 1 Advanced Coding Comparison Marie-Helene Hamon,

Slides:



Advertisements
Similar presentations
Doc.: IEEE /383 Submission November 2000 Yasuo Harada, Matushita Electric Slide 1 A consideration on FEC Bit error Performance of concatenation.
Advertisements

Doc.: IEEE /0017r0 Submission January 2006 Patrick Pirat, France TelecomSlide 1 Duo-binary_Turbo-codes: questions and answers IEEE P Wireless.
Doc.: IEEE /0071r1 Submission January 2004 Aleksandar Purkovic, Nortel NetworksSlide 1 LDPC vs. Convolutional Codes for n Applications:
What is a good code? Ideal system
INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS ETC 2010 NINTH EDITION A PHYSICAL LAYER SIMULATOR FOR WIMAX Marius Oltean, Maria Kovaci,
Inserting Turbo Code Technology into the DVB Satellite Broadcasting System Matthew Valenti Assistant Professor West Virginia University Morgantown, WV.
Submission May, 2000 Doc: IEEE / 086 Steven Gray, Nokia Slide Brief Overview of Information Theory and Channel Coding Steven D. Gray 1.
Submission doc.: IEEE /0339r0 March 2015 Alecsander Eitan, QualcommSlide 1 SC 64APSK for ay Date: Authors:
Submission doc.: IEEE /0094r0 January 2015 Alecsander Eitan, QualcommSlide 1 SC 64QAM for NG60 Date: Authors:
Doc.: IEEE /1387 r0 Submission November 2014 Packet Encoding Solution for 45GHz Date: Authors: NameAffiliationsAddressPhone Liguang.
Doc.: IEEE /82a Submission Proposal for High Data Rate 2.4 GHz PHY Variable Rate Binary Convolutional Coding on QPSK Chris Heegard & Matthew B.
Doc.: IEEE /0abcr0 Submission Sept 2004 Mustafa Eroz, Hughes Network SystemsSlide 1 HNS Proposal for n Physical Layer Mustafa Eroz, Feng-Wen.
Turbo codes for short and medium block length: the state of the art Department 1 Paris, June 25, 2004 Claude Berrou, Catherine Douillard GET-ENST Bretagne/PRACOM/CNRS.
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Doc.: IEEE /0935r0 Submission July 2012 Vinko Erceg, Broadcom 6-10GHz UWB Link Budget and Discussion Date: Authors: Slide 1.
Design of a High-Speed Asynchronous Turbo Decoder Pankaj Golani, George Dimou, Mallika Prakash and Peter A. Beerel Asynchronous CAD/VLSI Group Ming Hsieh.
Doc.: IEEE /945r0 Submission August 2004 Pen C. Li, et al, Philips Slide 1 Begonya Otal, Job Oostveen, Joerg Habetha, Monisha Ghosh, Pen Li, Ronald.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
January 2004 doc.: IEEE a Submission Slide 1 Jason Ellis, Staccato Communications Project: IEEE P Working Group for Wireless Personal.
August 2004 doc.: IEEE /0951r1 Submission S. Coffey, et al., WWiSE group Slide 1 WWiSE Group Partial Proposal on Turbo Codes August 13, 2004 Airgo.
Doc.: IEEE a TG4a July 18th 2005 P.Orlik, A. Molisch, Z. SahinogluSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: aj SubmissionSlide 1 LDPC Coding for 45GHz Date: Authors: July 2014 NameAffiliationsAddressPhone Liguang LiZTE CorporationShenzhen.
Doc.: IEEE /1289r0 Submission November 2015 Thomas Handte, SonySlide 1 Non-Uniform Constellations for 1024-QAM Date: 2015/11/08 Authors:
Submission doc: IEEE /0807r0 July 2010 R. Kudo et al., NTT Slide 1 PHY Abstraction for MU-MIMO Date: Authors: Name AffiliationsAddressPhone .
Doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 1 Advanced Coding Comparison Marie-Helene Hamon,
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Doc.: IEEE /0431r0 Submission May 2005 Bjorn A. Bjerke, QualcommSlide 1 Responses to reasons and cures comments on TGn Sync LDPC codes Notice:
Doc.: IEEE / n Submission March 2004 PCCC Turbo Codes for IEEE n B. Bougard; B. Van Poucke; L. Van der Perre {bougardb,
Doc.: IEEE 11-04/0304r0 Submission March 2004 John S. Sadowsky, Intel PER Prediction for n MAC Simulation John S. Sadowsky (
Submission September 2015 doc.: IEEE /1089r0 September 2015 Slide 1 Considerations on PHY Padding and Packet Extension in 11ax Date:
Doc.: IEEE /0535r0 Submission May 2008 Thomas Kenney, Minyoung Park, Eldad Perahia, Intel Corp. Slide 1 PHY and MAC Throughput Analysis with 80.
Doc.: IEEE /0213r1 Submission Slide 1 David Tung, et al. (Ralink Technology) March 2005 On the Efficiency of TGnSync Preambles David Tung,
Tinoosh Mohsenin 2, Houshmand Shirani-mehr 1, Bevan Baas 1 1 University of California, Davis 2 University of Maryland Baltimore County Low Power LDPC Decoder.
Doc.: IEEE /0022r0 Submission January 2007 Wu Yu-Chun, Huawei HisiSlide 1 Enhanced Beacon Sync Frame for the IEEE P Wireless RANs.
Doc.: IEEE /0243r1 Submission Franck Lebeugle, France Telecom R&D March 2004 Slide 1 Turbo Codes for IEEE n Marie-Helene Hamon, Vincent.
Waseda University Low-Density Parity-Check Code: is an error correcting code which achieves information rates very close to the Shanon limit. Message-Passing.
Date Submitted: [18 March 2004]
August 2004 doc.: IEEE / n August 2004
Date Submitted: [18 March 2004]
Length 1344 LDPC codes for 11ay
WWiSE Group Partial Proposal on Turbo Codes
WWiSE Group Partial Proposal on Turbo Codes
Q. Wang [USTB], B. Rolfe [BCA]
SC 64-QAM in clause 21 PHY Date: Authors: November 2015
Rate 7/8 LDPC Code for 11ay Date: Authors:
Rate 7/8 (1344,1176) LDPC code Date: Authors:
January 2004 Turbo Codes for IEEE n
Partial Proposal: Turbo Codes
IEEE P Wireless RANs Date:
Advanced Coding Comparison
ST Microelectronics LDPCC Partial Proposal-Key Points
August 2004 doc.: IEEE / n August 2004
Turbo Codes for IEEE n May 2004
Investigation of PA Model Sample Rate for TGac
<month year> doc.: IEEE /125r0 August 2004
August 2004 doc.: IEEE / n August 2004
Different Channel Coding Options for MIMO-OFDM n
Advanced Coding Comparison
January 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Rate 1/4 LDPC interleaver proposal] Date.
Low-Density Parity-Check Codes
Detailed Responses to “Reasons and Cures” Comments on MCS Set
An evaluation of error-correcting codes
August 2004 doc.: IEEE / n August 2004
Considerations on NGV PHY design
STBC in Single Carrier(SC) for IEEE aj (45GHz)
Sean Coffey, Ph.D., Chris Heegard, Ph.D.
9-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
Performance Analysis of Outer RS Coding Scheme
NGV PHY Performance Results
NGV PHY Performance Results
Presentation transcript:

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 1 Advanced Coding Comparison Marie-Helene Hamon, John Benko France Telecom Apurva ModyIndependant With Contributions from : Claude Berrou ENST Bretagne Jacky TouschTurboConcept Brian EdmonstoniCoding

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 2 Outline Coding proposals in TGn Advanced FEC Code Requirements for TGn Comparing Codes –Complexity –Performance Facts & Recommendations

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 3 Coding Proposals in TGn (Historical) Partial (13): –NokiaLDPC –Infocomm ResearchLDPC –ST MicroLDPC –NortelLDPC –PanasonicLDPC –HughesLDPC –InprocommLDPC –Sharp7/8 CC –PhilipsConcatenated RS –TrelliswareHybrid LDPC/TurboCode –France TelecomTurbo Code –MotorolaTurbo Code –WwiseTurbo Code Full: –TGnSyncLDPCOptional –Wwise LDPCOptional –MitMotTurbo CodeOptional –QualcommNone

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 4 Advanced FEC Code Requirements Performance –Much better than a CC –Must have good performance for all possible blocksizes (small and large) Small blocksize example: VoIP packets (as small as 50 bytes) Large blocksize example: Streaming HD-Video Latency –Low, < 6 us –Good performance with a small number of iterations Implementation –Low Cost – small die size (memory and logic) –Mature, – Chipsets require fast time to market Should not be held up due to a FEC without a well-defined implementation

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 5 Complexity Comparison Chip Area –Number of Gates –Technology used (ex. ASIC 0.13 mm, average density of 222 kgates/mm 2 ) –Degree of Parallelism (relates also to max decoded bit-rate) Latency < 6 ms –Number of Iterations –Degree of Parallelism –Clock Frequency used (typical F clk =200 MHz) Example Comparison Chart CodeMax Encoded Block Size F clk MHz PN it Total Memory Decoded Rate(Max) Max Latency Area (.13 mm) Wwise LDPC bits240?12?300 Mbps 6.0  s ? Sync LDPC 1728 bits??????? Turbo Code* duo-binary 2048 bits kbits320 Mbps 4.8  s 1.4 mm kbits480 Mbps 3.2  s 2.0 mm kbits200 Mbps 5.12  s 2.0 mm 2 *Estimates from [4] +Estimates from [1]

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 6 Performance Comparison

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 7 ST-Micro (Wwise)* LDPCC SISO AWGN BPSK + N=1744 bits Wwise LDPCC -972 bits (121.5 bytes) 12i => 600kGates, 6 us Duo-Binary TC -976 bits (122 bytes) 8i, P=12 => 2.0 mm 2, 5.12 us TGnSync LDPCC -Equivalent not found *Wwise Results from Berlin presentation [1] + BPSK, R=1/2 proposed as optional mode in Wwise

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 8 Wwise LDPCC* 2x2 SDM, AWGN 64-QAM, R=3/4 Gains over PER LDPCC: ~2.4 dB (12 iterations) TC : ~3.2 dB (8 iterations) *Wwise Results taken from [2] TC LDPCC CC

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 9 LDPCC from.16e* *LDPCC here [3] is slightly different from what is used in TGnSync SISO, AWGN, QPSK, R=1/2 LDPCC - 50 iterations (unrealistic) TC - 8 iterations (realistic) TC Gains over PER N=2304: 0.2 dB N=576 : 0.3 dB (increase with smaller block size) TC LDPCC

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 10 Facts & Recommendations Modularity –Performance of the FEC code is independant of system –Codes proposed can be easily put into WWise and TGnSync Difficult to compare –From FRCC, code performance seen only in context of full system –Current two proposed specfications differ Wwise nor TGnSych provided simulation results for their code with other proposal –Codes compared in performance should be of similar complexity –Very little precise complexity results have been seen to this date Mature code –Enables pre and 1 st production devices to ship with advanced coding options. Action Item? –Re-thinking (creating) an advanced coding selection process will decrease the chances of selecting an advanced coding scheme that is not in the best interest of TGn –Suggestion: Investigate coding options in a separate coding sub-group

doc.: IEEE /0146r1 Submission March 2005 John Benko, Marie-Helene Hamon, France TelecomSlide 11 References [1] IEEE /400r4, " ST Microelectronics LDPCC Partial Proposal for n CFP”, ST Micro, September [2] IEEE / n, “WWiSE proposal response to functional requirements and comparison criteria.” [3] IEEE e-0/006, " LDPC Coding for OFDMA PHY", January [4] IEEE /1382r1, "Turbo Codes: Complexity Estimates", TurboConcept France Telecom R&D, November [5] [6] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon limit error- correcting coding and decoding: Turbo Codes", ICC93, vol. 2, pp , May 93. [7] C. Berrou, "The ten-year-old turbo codes are entering into service", IEEE Communications Magazine, vol. 41, pp , August 03. [8] C. Berrou, M. Jezequel, C. Douillard, S. Kerouedan, "The advantages of non-binary turbo codes", Proc IEEE ITW 2001, pp , Sept. 01.