SiriusUVX LNLS – National Synchrotron Light Laboratory CNPEM – Brazilian Center for Research on Energy and Materials A R Rodrigues, M Lisboa, R Madacki CNPEM Sirius the next LNLS synchrotron light source
Storage ring Booster LINAC Partially removable roof for ID and frontend installation 10 chicanes Sirius the next LNLS synchrotron light source
Sirius the next LNLS synchrotron light source
Building occupation
ParameterValueUnit Energy3.0GeV Maximum current500mA Circumference518.25m RF frequency500MHz Straight sections (SS), number x length 10 x 7 10 x 6 mmmm Emittance (without IDs)0.28nm.rad Harmonic number864 Bending field (dipoles / ”superbends”)0.58 / 2.0Tesla Critical energy from “superbends”11.7keV superbend, HxV11 x 4.0μm2μm2 short SS, HxV33 x 1.4μm 2 twenty-fold 5-bend achromat Storage ring specifications
ParameterMulti-bunchSingle-bunch Energy150 MeV Relative energy spread (rms)< 0.5 % Pulse charge> 3> 1nC Pulse width100 to 300< 1ns Repetition rate22Hz LINAC specifications
Parameter Extraction energy3.0GeV Injection energy150MeV Current2.0mA Circumference496.8m Revolution period1.66μs Cycling frequency2Hz Harmonic number828 Booster specifications
septa Storage ring Booster LINAC 150 MeV Linac 3 GeV Booster Injection system
Booster 3 GeV Storage ring 150 MeV LINAC Critical spots: BI – booster injection (150MeV) BE – booster extraction SI – storage ring injection Bulk shielding for the injection region
Copper vacuum chamber 26 mm, 1mm wall Booster ejection local shielding 15 cm steel Synchrotron radiation collimator (steel) Chicane Concrete 2.35 g/cm³ Bulk shielding geometry used in simulations FLUKA simulations
Bulk shielding geometry used in simulations FLUKA simulations RF waveguide passage Chicane
FLUKA simulations Bulk shielding geometry used in simulations
Injection losses at each septum in topup mode (localized) SeptumLosses Electron energy Incoming electrons Incoming power Expected losses at this point [GeV][e¯/h][W][e¯/h][W] BI20% E E BE20% E E SI20% E E BI: booster injection septum BE: booster extraction septum SI: storage ring injection septum Lifetime and ramp losses (distributed) Electron energyExpected losses [GeV][e¯/h][W] Storage ring E Booster0.15 to 3 GeV6.6E Estimated electron losses worst case (3 GeV)
Injection losses inside the SR/booster tunnel during normal operation (topup) Estimated electron losses
FLUKA x Swanson without steel local shielding Swanson0.2μSv/h FLUKA0.2±0.1μSv/h With 4.2e+11e¯/h on the target Simulations with FLUKA Booster ejection without the local shielding BE Swanson*43μSv/h FLUKA**8.8±1.0μSv/h With 4.2e+11e¯/h on the target *Thick target ** 2mm thick copper chamber
Without steel plate1.7±0.6μSv/h With steel plate1.1±0.2μSv/h With 4.2e+11e¯/h on the target Dose-eq [pSv/e¯] Effect of the 15 cm steel plate (FLUKA) Without steel plate8.8±1.0μSv/h With steel plate1.7±0.2μSv/h With 4.2e+11e¯/h on the target Simulations with FLUKA
Chicane Chicane with steel plate shield 0.05±0.01μSv/h 15 cm steel plate Chicane Simulations with FLUKA Tunnel chicane
RF cavity waveguide chicane FLUKA simulations Waveguide chicane Waveguide chicane with steel plate shield 0.2±0.06μSv/h
Preliminary situation Dose limit goal: 1 mSv/yr for all workers Accidents: local shielding Calculations and strategies are going on
Thank you very much for your attention! 20