Intelligent Database Systems Lab N.Y.U.S.T. I. M. How valuable is medical social media data? Content analysis of the medical web Presenter :Tsai Tzung.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Validating Transliteration Hypotheses Using the Web: Web.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Discovering Leaders from Community Actions Presenter : Wu, Jia-Hao Authors : Amit Goyal, Francesco Bonchi,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Quality evaluation of product reviews using an information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text classification based on multi-word with support vector.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Probabilistic Model for Definitional Question Answering.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Satoshi Oyama Takashi Kokubo Toru lshida 國立雲林科技大學 National Yunlin.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The k-means range algorithm for personalized data clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Positive and Negative Patterns for Relevance Feature.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction Presenter : Jiang-Shan.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. SpotSigs: Robust and Efficient Near Duplicate Detection in Large Web Collections Presenter: Tsai Tzung.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A quantitative stock prediction system based on financial news Presenter : Chun-Jung Shih Authors :Robert.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A semantic similarity metric combining features and intrinsic information content Presenter: Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Concept similarity in Formal Concept Analysis-An information.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Plagiarism Detection Technique for Java Program Using.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Development of a reading material recommendation system based on a knowledge engineering approach Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. TurSOM: A Turing Inspired Self-organizing Map Presenter: Tsai Tzung Ruei Authors: Derek Beaton, Iren.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Word sense disambiguation of WordNet glosses Presenter: Chun-Ping Wu Author: Dan Moldovan, Adrian Novischi.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Adaptation of the Vector-Space Model for Ontology-Based.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fraud detection in online consumer reviews Presenter: Tsai Tzung Ruei Authors: Nan Hu, Ling Liu, Vallabh.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Extreme Visualization: Squeezing a Billion Records into a Million Pixels Presenter : Jiang-Shan Wang.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Psychiatric document retrieval using a discourse-aware model Presenter : Wu, Jia-Hao Authors : Liang-Chih.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Multiclass boosting with repartitioning Graduate : Chen,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Improving the performance of personal name disambiguation.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Region-based image retrieval using integrated color, shape,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A personal route prediction system base on trajectory.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Semantic segment extraction and matching for Internet.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Cost- sensitive boosting for classification of imbalanced.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Mining concept maps from news stories for measuring civic scientific literacy in media Presenter :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Mining Source Code Elements for Comprehending Object- Oriented.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 TIARA: A Visual Exploratory Text Analytic System Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Self Organizing Maps and Bit Signature: a study applied.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Modeling Semantic Similarities in Multiple Maps Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Study of Learning a Merge Model for Multilingual Information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Concept Frequency Distribution in Biomedical Text Summarization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Text Classification Improved through Multigram Models.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Using annotation services in a ubiquitous Jigsaw cooperative learning environment Presenter : Su, Wun-Huei.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Key Blog Distillation: Ranking Aggregates Presenter : Yu-hui Huang Authors :Craig Macdonald, Iadh Ounis.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Discovering Interesting Usage Patterns in Text Collections:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text Classification, Business Intelligence, and Interactivity:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Extraction from Wikipedia: Moving Down the Long.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An Integrated Machine Learning Approach to Stroke Prediction Presenter: Tsai Tzung Ruei Authors: Aditya.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A support system for predicting eBay end prices Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Shopbot 2.0-Integrating recommendations and promotions with comparison shopping Presenter : Wu, Jia-Hao.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 f-information measures in medical image registration Presenter.
Presentation transcript:

Intelligent Database Systems Lab N.Y.U.S.T. I. M. How valuable is medical social media data? Content analysis of the medical web Presenter :Tsai Tzung Ruei Authors :Kerstin Denecke, Wolfgang Nejdl InfSci 2009 國立雲林科技大學 National Yunlin University of Science and Technology

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Outline Motivation Objective Methodology Experiments Conclusion Comments 2

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation It is still an open question where to search for complying a specific information need due to the large amount and diversity of information available. Finding the best knowledge source to comply a specific information need is difficult, because relevant information can be either hidden in web pages or encapsulated in social media data such as blogs and Q&A portals. 3 We focus on health-related information provided in the Internet. Why? First, health-related experiences and medical histories offer unique data for research purposes, for practitioners, and for patients. Second, it is still an open question whether existing text and content analysis tools are able to process medical social media data and to identify relevant (medical) information out of them.

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objective To give an overview on content differences in the various social media resources on health-related topics. In particular, the content of medical Question & Answer Portals, medical weblogs, medical reviews and Wikis is compared. 4

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Research questions Data collection Data analysis 5 1. Which topics do the different health-related web resources focus on? 2. What similarities and differences in content exist between different medical social media data resources? 3. To what extent do medical blogs contain information or experiences? 1. Query&Answer Forums 2. Medical weblogs 3. Reviews 4. Wikis and encyclopedias 1. Assessing the medical content 2. Assessing the information type of documents

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Data collection 1. Query&Answer Forums 2. Medical weblogs 3. Reviews 4. Wikis 6

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Data analysis  Assessing the medical content 7 SeReMeD Medical text A semantic representation

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology Data analysis  Assessing the information type of documents 8 Assumptions 1. Extensive use of medical terminology is an indication for informative content. 2. Adjectives are an indication for affective content.

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments The manually classified posts of physicians and patients 9

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Result 1 10

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Result 2 11

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Result 3 12

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Excluded data written by nurses Training results 13 Assumption more patient-written posts are informative than nurse-written posts. contradiction

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusion MAJOR CINTRIBUTION  Several conclusions can be drawn from the aforementioned results. Our hypotheses proved only to be partly true.  provide an overview on the content available in the (medical) Web.  Disorders and Physiology  Anatomy and Procedures  Drugs FUTURE WORK  Plan to test the proposed method to identify informative (or ‘good’) answers to health-related queries in rather general Q&A portals such as Yedda, where answers can be given by any person. This could help to filter out comments and irrelevant answers. 14 Drug reviews and AskDrWiki weblogs and Q&A AskDrWiki and MedlinePlus

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments Advantage  To help to identify the best-suited information source in order to comply a specific information need.  A potential application of our algorithm is its exploitation for sorting or ranking search results within a blog post search engine. Drawback  This work is unique in a sense that such an analysis was still missing in particular for the domain of medicine. Application  information retrieval 15