Maria-Florina Balcan Mechanism Design, Machine Learning and Pricing Problems Maria-Florina Balcan Joint work with Avrim Blum, Jason Hartline, and Yishay.

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

Truthful Mechanisms for Combinatorial Auctions with Subadditive Bidders Speaker: Shahar Dobzinski Based on joint works with Noam Nisan & Michael Schapira.
Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
Algorithmic mechanism design Vincent Conitzer
Online Learning for Online Pricing Problems Maria Florina Balcan.
Online Mechanism Design (Randomized Rounding on the Fly)
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
The Communication Complexity of Approximate Set Packing and Covering
Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan.
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Max Cut Problem Daniel Natapov.
Prompt Mechanisms for Online Auctions Speaker: Shahar Dobzinski Joint work with Richard Cole and Lisa Fleischer.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
A Prior-Free Revenue Maximizing Auction for Secondary Spectrum Access Ajay Gopinathan and Zongpeng Li IEEE INFOCOM 2011, Shanghai, China.
A Sufficient Condition for Truthfulness with Single Parameter Agents Michael Zuckerman, Hebrew University 2006 Based on paper by Nir Andelman and Yishay.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Revenue Maximization in Probabilistic Single-Item Auctions by means of Signaling Joint work with: Yuval Emek (ETH) Iftah Gamzu (Microsoft Israel) Moshe.
Algorithmic Applications of Game Theory Lecture 8 1.
The Stackelberg Minimum Spanning Tree Game Jean Cardinal · Erik D. Demaine · Samuel Fiorini · Gwenaël Joret · Stefan Langerman · Ilan Newman · OrenWeimann.
Fast FAST By Noga Alon, Daniel Lokshtanov And Saket Saurabh Presentation by Gil Einziger.
Maria-Florina Balcan Approximation Algorithms and Online Mechanisms for Item Pricing Maria-Florina Balcan & Avrim Blum CMU, CSD.
Maria-Florina Balcan Modern Topics in Learning Theory Maria-Florina Balcan 04/19/2006.
Welfare and Profit Maximization with Production Costs A. Blum, A. Gupta, Y. Mansour, A. Sharma.
Welfare Maximization in Congestion Games Liad Blumrosen and Shahar Dobzinski The Hebrew University.
Item Pricing for Revenue Maximization in Combinatorial Auctions Maria-Florina Balcan, Carnegie Mellon University Joint with Avrim Blum and Yishay Mansour.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
CPSC 689: Discrete Algorithms for Mobile and Wireless Systems Spring 2009 Prof. Jennifer Welch.
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
Machine Learning for Mechanism Design and Pricing Problems Avrim Blum Carnegie Mellon University Joint work with Maria-Florina Balcan, Jason Hartline,
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.
Maria-Florina Balcan Learning with Similarity Functions Maria-Florina Balcan & Avrim Blum CMU, CSD.
1 Combinatorial Dominance Analysis Keywords: Combinatorial Optimization (CO) Approximation Algorithms (AA) Approximation Ratio (a.r) Combinatorial Dominance.
Competitive Auctions and Digital Goods Andrew Goldberg, Jason Hartline, and Andrew Wright presenting: Keren Horowitz, Ziv Yirmeyahu.
Maria-Florina Balcan Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan 11/13/2007.
Incentive-compatible Approximation Andrew Gilpin 10/25/07.
Topics in the border of economics and computation seminar Presented by: Avinatan Hasidim Yair Weinberger Gabrielle Demange, David gale, Matilda Sotomayor.
1 Joint work with Shmuel Safra. 2 Motivation 3 Motivation.
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
VCG Computational game theory Fall 2010 by Inna Kalp and Yosef Heskia.
1 Deterministic Auctions and (In)Competitiveness Proof sketch: Show that for any 1  m  n there exists a bid vector b such that Theorem: Let A f be any.
Submodular Functions Learnability, Structure & Optimization Nick Harvey, UBC CS Maria-Florina Balcan, Georgia Tech.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
1 Competitive Auctions Authors: A. V. Goldberg, J. D. Hartline, A. Wright, A. R. Karlin and M. Saks Presented By: Arik Friedman and Itai Sharon.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Unlimited Supply Infinitely many identical items. Each bidder wants one item. –Corresponds to a situation were we have no marginal production cost. –Very.
A graph is a set of vertices and edges between some vertices.. A bipartite graph has two clumps of vertices, with edges going from a vertex in one clump.
Algorithmic Mechanism Design: an Introduction Approximate (one-parameter) mechanisms, with an application to combinatorial auctions Guido Proietti Dipartimento.
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
1 Convex Recoloring of Trees Reuven Bar-Yehuda Ido Feldman.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Item Pricing for Revenue Maximization in Combinatorial Auctions Maria-Florina Balcan.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
Approximation Algorithms for Combinatorial Auctions with Complement-Free Bidders Speaker: Shahar Dobzinski Joint work with Noam Nisan & Michael Schapira.
Non-LP-Based Approximation Algorithms Fabrizio Grandoni IDSIA
Reconstructing Preferences from Opaque Transactions Avrim Blum Carnegie Mellon University Joint work with Yishay Mansour (Tel-Aviv) and Jamie Morgenstern.
Theory of Computational Complexity Probability and Computing Ryosuke Sasanuma Iwama and Ito lab M1.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 09
Haim Kaplan and Uri Zwick
Planarity Testing.
Mechanism Design via Machine Learning
Coverage Approximation Algorithms
The Byzantine Secretary Problem
Presentation transcript:

Maria-Florina Balcan Mechanism Design, Machine Learning and Pricing Problems Maria-Florina Balcan Joint work with Avrim Blum, Jason Hartline, and Yishay Mansour

Maria-Florina Balcan Outline of the Talk Reduce problems of incentive-compatible mechanism design to standard algorithmic questions. Focus on revenue-maximization, unlimited supply. - Digital Good Auction - Attribute Auctions - Combinatorial Auctions Use ideas from Machine Learning. –Sample Complexity techniques in MLT for analysis. Approximation Algorithms for Item Pricing. Revenue maximization, unlimited supply combinatorial auctions with single-minded consumers [BBHM05] [BB06]

Maria-Florina Balcan MP3 Selling Problem We are seller/producer of some digital good (or any item of fixed marginal cost), e.g. MP3 files. Goal: Profit Maximization

Maria-Florina Balcan MP3 Selling Problem We are seller/producer of some digital good, e.g. MP3 files. Compete with fixed price. or… Use bidders’ attributes: country, language, ZIP code, etc. Goal: Profit Maximization Digital Good Auction (e.g., [GHW01]) Attribute Auctions [BH05] Compete with best “simple” function.

Maria-Florina Balcan Example 2, Boutique Selling Problem 20$ 30$ 5$ 25$ 20$ 100$ 1$

Maria-Florina Balcan Example 2, Boutique Selling Problem Goal: Profit Maximization Combinatorial Auctions Compete with best item pricing [GH01]. 20$ 30$ 5$ 25$ 20$ 100$ 1$

Maria-Florina Balcan Generic Setting (I) S set of n bidders. Bidder i: –priv i (e.g., how much is willing to pay for the MP3 file) –pub i (e.g., ZIP code) Unlimited supply Goal: Profit Maximization Profit of g:  i g(i) Space of legal offers/pricing functions. G - pricing functions. Goal: IC mech to do nearly as well as the best g 2 G. g(i) – profit obtained from making offer g to bidder i g(i)= p if p · priv i g(i)= 0 if p>priv i Digital Good g maps the pub i to pricing over the outcome space. g=“ take the good for p, or leave it”

Maria-Florina Balcan Attribute Auctions one item for sale in unlimited supply (e.g. MP3 files). bidder i has public attribute a i 2 X Example: X=R 2, G - linear functions over X G - a class of ‘’natural’’ pricing functions. Attr. space attributes valuations

Maria-Florina Balcan Generic Setting (II) Our results: reduce IC to AD. Algorithm Design: given (priv i, pub i ), for all i 2 S, find pricing function g 2 G of highest total profit. Incentive Compatible mechanism: offer for bidder i based on the public information of S and private info of S n {i}.

Maria-Florina Balcan Main Results [BBHM05] Generic Reductions, unified analysis. General Analysis of Attribute Auctions: –not just 1-dimensional Combinatorial Auctions: –First results for competing against opt item-pricing in general case (prev results only for “unit-demand”[GH01]) –Unit demand case: improve prev bound by a factor of m.

Maria-Florina Balcan Basic Reduction: Random Sampling Auction RSOPF (G,A) Reduction Bidders submit bids. Randomly split the bidders into S 1 and S 2. Run A on S i to get (nearly optimal) g i 2 G w.r.t. S i. Apply g 1 over S 2 and g 2 over S 1. S S1S1 S2S2 g 1 =OPT(S 1 ) g 2 =OPT(S 2 )

Maria-Florina Balcan Basic Analysis, RSOPF (G, A) Theorem 1 1) Consider a fixed g and profit level p. Use McDiarmid ineq. to show: Proof sketch Lemma 1

Maria-Florina Balcan Basic Analysis, RSOPF (G,A), cont 2) Let g i be the best over S i. Know g i (S i ) ¸ g OPT (S i )/ . In particular, Using also OPT G ¸  n, get that our profit g 1 (S 2 ) +g 2 (S 1 ) is at least (1-  )OPT G / .

Maria-Florina Balcan Attribute Auctions, RSOPF (G k, A) G k : k markets defined by Voronoi cells around k bidders & fixed price within each market. Assume we discretize prices to powers of (1+  ). attributes

Maria-Florina Balcan Attribute Auctions, RSOPF (G k, A) G k : k markets defined by Voronoi cells around k bidders & fixed price within each market. Assume we discretize prices to powers of (1+  ). Corollary (roughly)

Maria-Florina Balcan Structural Risk Minimization Reduction SRM Reduction Let Randomly split the bidders into S 1 and S 2. Compute g i to maximize Apply g 1 over S 2 and g 2 over S 1. What if we have different functions at different levels of complexity? Don’t know best complexity level in advance. Theorem

Maria-Florina Balcan Attribute Auctions, Linear Pricing Functions Assume X=R d. N= (n+1)(1/  ) ln h. |G’| · N d+1 attributes valuations x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Maria-Florina Balcan Covering Arguments Definition: G’  -covers G wrt to S if for 8 g 9 g’ 2 G’ s.t. 8 i |g(i)-g’(i)| ·  g(i). What if G is infinite w.r.t S? Use covering arguments: find G’ that covers G, show that all functions in G’ behave well Theorem (roughly) If G’ is  -cover of G, then the previous theorems hold with |G| replaced by |G’|. attributes valuations Analysis Techniqu e

Maria-Florina Balcan Conclusions and Open Problems [BBHM05] Explicit connection between machine learning and mechanism design. Use of ideas in MLT for both design and analysis in auction/pricing problems. Unique challenges & particularities: Loss function discontinuous and asymmetric. Range of valuations large. Apply similar techniques to limited supply. Study Online Setting. Open Problems

Maria-Florina Balcan Outline of the Talk Reduce problems of incentive-compatible mechanism design to standard algorithmic questions. Focus on revenue-maximization, unlimited supply. Use ideas from Machine Learning. –Sample Complexity techniques in MLT for analysis. Approximation Algorithms for Item Pricing. Revenue maximization, unlimited supply combinatorial auctions with single-minded bidders [BBHM05] [BB06]

Maria-Florina Balcan Algorithmic Problem, Single-minded Customers m item types (coffee, cups, sugar, apples, …), with unlimited supply of each. n customers. Say all marginal costs to you are 0 [revisit this in a bit], and you know all the (L i, w i ) pairs. Each customer i has a shopping list L i and will only shop if the total cost of items in L i is at most some amount w i (otherwise he will go elsewhere). What prices on the items will make you the most money? Easy if all L i are of size 1. What happens if all L i are of size 2?

Maria-Florina Balcan Algorithmic Pricing, Single-minded Customers A multigraph G with values w e on edges e. Goal: assign prices on vertices p v ¸ 0 to maximize total profit, where: APX hard [GHKKKM’05]

Maria-Florina Balcan A Simple 2-Approx. in the Bipartite Case Goal: assign prices on vertices p v ¸ 0 as to maximize total profit, where: Set prices in R to 0 and separately fix prices for each node on L. Set prices in L to 0 and separately fix prices for each node on R Take the best of both options. Algorithm Given a multigraph G with values w e on edges e. Proof simple ! OPT=OPT L +OPT R LR

Maria-Florina Balcan A 4-Approx. for Graph Vertex Pricing Goal: assign prices on vertices p v ¸ 0 to maximize total profit, where: Randomly partition the vertices into two sets L and R. Ignore the edges whose endpoints are on the same side and run the alg. for the bipartite case. Algorithm Proof In expectation half of OPT’s profit is from edges with one endpoint in L and one endpoint in R. Given a multigraph G with values w e on edges e. simple !

Maria-Florina Balcan Algorithmic Pricing, Single-minded Customers, k-hypergraph Problem What about lists of size · k? –Put each node in L with probability 1/k, in R with probability 1 – 1/k. –Let GOOD = set of edges with exactly one endpoint in L. Set prices in R to 0 and optimize L wrt GOOD. Let OPT j,e be revenue OPT makes selling item j to customer e. Let X j,e be indicator RV for j 2 L & e 2 GOOD. Our expected profit at least: Algorithm

Maria-Florina Balcan Algorithmic Pricing, Single-minded Customers What if items have constant marginal cost to us? We can subtract these from each edge (view edge as amount willing to pay above our cost). But, one difference: Can now imagine selling some items below cost in order to make more profit overall Reduce to previous problem.

Maria-Florina Balcan Algorithmic Pricing, Single-minded Customers What if items have constant marginal cost to us? We can subtract these from each edge (view edge as amount willing to pay above our cost). Reduce to previous problem. But, one difference: Can now imagine selling some items below cost in order to make more profit overall. Previous results only give good approximation wrt best “non-money-losing” prices. Can actually give a log(m) gap between the two benchmarks

Maria-Florina Balcan Conclusions and Open Problems [BB06] Summary: 4 approx for graph case. O(k) approx for k-hypergraph case. Improves the O(k 2 ) approximation of Briest and Krysta, SODA’06. –Also simpler and can be naturally adapted to the online setting. 4 - , o(k). How well can you do if pricing below cost is allowed? Open Problems