Deuterated molecules: a chemical filter for recently evaporated gas Francesco Fontani (INAF-OAA) C. Codella, C. Ceccarelli, B. Lefloch, M.E. Palumbo …

Slides:



Advertisements
Similar presentations
The Water D/H Ratio in Molecular Outflows in Orion BN/KL Shiya Wang Astronomy Department, University of Michigan Edwin A. Bergin (U. of Michigan) René
Advertisements

Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Submillimeter Array observations of the L1157 protostellar jet Arturo I. Gomez Centro de Radioastronomia y Astrofisica UNAM, Mexico 5th JETSET school Naomi.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
M. Benedettini, A. Lorenzani, B. Nisini, M. Vasta (Italy) S. Cabrit, E. Caux, C. Ceccarelli, P. Hily-Blant, B. Lefloch, L. Pagani, S. Pacheco, M. Salez.
Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The B1 shock in the L1157 outflow as seen at high spatial resolution M. Benedettini, S. Viti, C. Codella, F. Gueth, A. Gomez-Ruiz, R. Bachiller, M. Beltran,
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
Observations of deuterated molecules as probes of the earliest stages of star formation. Helen Roberts University of Manchester.
M. Emprechtinger, D. Lis, P. Schilke, R. Rolffs, R. Monje, The Chess Team.
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
Chemistry in low-mass star forming regions: ALMA ’ s contribution Yuri Aikawa (Kobe Univ.) Collaborators: Hideko Nomura (Kobe Univ.) Hiroshi Koyama (Kobe.
The ortho-H 2 abundance and the age of molecular clouds Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Adwin Boogert Geoff Blake Michiel Hogerheijde Caltech/OVRO Univ. of Arizona Tracing Protostellar Evolution by Observations of Ices.
Complex organic molecules in hot corinos
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gas and Dust (Interstellar) Astrochemistry.
Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Studies of Star.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
A MINIMUM COLUMN DENSITY FOR O-B STAR FORMATION: AN OBSERVATIONAL TEST Ana López Sepulcre INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY) Co-authors:
HIFI Juergen Stutzki- Co-Principal Investigator for HIFI on behalf of the HIFI consortium.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The chemical interaction of dust and gas in prestellar cores Paola Caselli.
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A Confusion Limited Spectral Survey of Orion KL ( GHz) And a 2D Spectral Line Survey at 1mm José Cernicharo (CAB. INTA-CSIC) Nuria Marcelino (NRAO),
The properties of starless cores in intermediate-/high-mass protoclusters Francesco Fontani European Southern Observatory (ESO) Institut de RadioAstronomie.
Introduction to Astrochemistry
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
“The Dusty and Molecular Universe” October 2004
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
Helen Roberts University of Manchester
Some Chemistry in Assorted Star-forming Regions Eric Herbst.
ISM & Astrochemistry Lecture 4. Nitrogen Chemistry (dark clouds) H N  NH + + H 2 Endothermic by ~ 100K N + + H 2  NH + + HEndothermic So, at low.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gaseous Chemistry in Interstellar Space.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Complex Organic Molecules formation on Interstellar Grains Qiang Chang Xinjiang Astronomical Observatory Chinese Academy of Sciences April 22, 2014.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
ALMA observations of Molecules in Supernova 1987A
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Deuterium-Bearing Molecules in Dense Cores
On the Formation of Molecules on Interstellar Grains
First Detection of OD outside the Solar System
High Resolution Submm Observations of Massive Protostars
First Detection of OD outside the Solar System
Methanol emission from low mass protostars
Presentation transcript:

Deuterated molecules: a chemical filter for recently evaporated gas Francesco Fontani (INAF-OAA) C. Codella, C. Ceccarelli, B. Lefloch, M.E. Palumbo … et al.

Formation of D-molecules H HD H 2 D + + H K 1. If T ≤ 20 K H 2 D + /H 3 + increases in cold gas (>> D/H cosmic abundance ~10 -5 ) CH HD CH 2 D + + H K C 2 H HD C 2 HD + + H K H CO HCO + + H 2 H 2 D + + CODCO + + H 2 2. If CO freezes-out (i.e. n≥10 5 cm -3 ) H 3 + and H 2 D + combine with other neutrals, X, Increasing [XD + ]/[XH + ] ratios (e.g., X=N 2  N 2 D + /N 2 H + ~0.1) Roberts & Millar 89; Gerlich+02; Asvany+04; Gerlich & Schlemmer 02; Flower If o-/p-H 2 is low H 2 D + /H 3 + is high H HD H 2 D + + o-H 2 Internal energy of o-H 2 170K higher than p-H 2

H 2 D + + CN  DCN + + H 2  HCND + + e -  DNC + H H 2 D + + N 2  N 2 D + + H 2 H 2 D + + NH 3  NH 3 D + + H 2 ; NH 3 D + + e -  NH 2 D + H Gas: Ion-molecule reactions Grains: hydrogenation forms saturated species…and their deuterated forms! Watson & Salpeter 1972; Hasegawa et al. 1992; Caselli et al. 1993; Turner 2001; Roueff et al. 2007; Caselli & Ceccarelli 2012; Ceccarelli et al. 2012, PPVI O  OH  H 2 O / HDO C  CH  CH 2  CH 3  CH 4 / CH 3 D N  NH  NH 2  NH 3 / NH 2 D CO  HCO  H 2 CO / HDCO  H 3 CO  CH 3 OH / CH 2 DOH H 2 D + + H 2 CO  H 2 DCO + + H 2 ; H 2 DCO + + e -  HDCO + H Formation of D-molecules: gas vs grain

B1 shock B2B2 Gueth et al. (1998), Benedettini et al. (2007), Codella et al. (2009) all highest velocity tracers converge here ! The L1157-B1 chemically rich bow-shock Powered by a Class 0 source (d = 250 pc) Most chemically rich outflow known so far: SiO, SO, NH 3, CH 3 OH, H 2 O, and many other molecules! Precessing molecular outflow associated with bow shocks seen in CO (Gueth et al. 1996) and H 2 (Neufeld et al. 2009): B1 is the brightest shocked region.

Deuterated molecules in L1157-B1! Codella+12, ApJ, 757, L9  L1157-B1 surveyed as part of the Herschel/CHESS and IRAM-30m/ASAI Large Programmes (Ceccarelli+10, in: 78 – 350 GHz (IRAM-30m) 500 – 2000 GHz (Herschel)  12 lines of deuterated molecules detected  Column densities of HDO, HDCO and CH 2 DOH consistent with “multi-layer” ices formed before the passage of the shock, and released into the gas by grain sputtering!

 PdBI angular resolution ~ 2.4”  HDCO emission delineates V-like region: the interface between shock and ambient material !!!  Similar to CH 3 CN (Codella+09) Fontani, Codella, Ceccarelli, LeFloch, Viti & Benedettini 2014, ApJL, 788, 43  ….and CH 3 CHO (Codella+15) First clear evidence of HDCO as shock tracer

L1157 (Spitzer) Bow-shock B1 protostar First clear evidence of HDCO as shock tracer

 PdBI angular resolution ~ 2.4”  CH 2 DOH emission faint and clumpy  ….likewise CH 3 OH (Benedettini+12)…  BUT DIFFICULT TO DEFINE AN EMITTING REGION! CH 2 DOH in L1157-B1: SHOCK TRACER?

Fontani+2014, ApJL,

Deuterated fractions in L1157-B1 WALL ARCH HEAD TOTAL Dfrac(H 2 CO) = Dfrac(CH 3 OH) within the errors

Fontani+2014, ApJL, 788, 43  ARCH and HEAD cover similar areas, and have similar temperatures (Codella+09);  H 2 CO formed in the gas similar: N gas arch ≈ N gas head ≈ N tot head  H 2 CO released from the grains different: N grain arch >> N grain head ~ 0  N tot arch – N tot head ≈ N grain arch  deuterated fraction on grains is: N tot (HDCO) arch /N grain (H 2 CO) arch ≅ 0.1 “clean” estimate of HDCO/H 2 CO on grain mantles!

HH 212: HDCO in a rotating cavity! ALMA cycle-1 (PI: Codella); Fontani et al., in prep. HDCO (red and blue) Codella et al. (2014) 3200 A.U. 220 A.U.

H 2 CO/CH 3 OH in L1157-B1: laboratory vs observations Palumbo et al., in prep. DOSE = ice age * CR flux Assuming ζ = 3x s -1 (Podio et al. 2014), the age is ~ 10 6 years

Deuterated molecules in shocks: summary and conclusions (1) The cavities of protostellar shocks are rich in HDCO. HDCO and CH 2 DOH emission associated with the interface between shock and ambient gas in L1157-B1 and HH 212  associated with grain sputtering – shock tracers (2) “clean” measurement of HDCO/H 2 CO on GRAIN MANTLES (~0.1) (3) “age” of grain processing from HDCO/CH 3 OH? To be confirmed Deuterated molecules are “chemical filters” for material formed on grain mantles and recently evaporated/desorbed

IRAC 8  m (grey) CO(2-1) (contours) (Looney et al. 2007, Bachiller et al. 2001) B1 shock B2B2 Powered by a Class 0 source (d = 250 pc) Most chemically rich outflow known so far: SiO, SO, NH 3, CH 3 OH, H 2 O, and many other molecules! PdBI CO(1-0)+ SiO(2-1)+CS(2-1) (Gueth et al. 1996, 1998, Benedettini et al. 2007) Herschel-PACS H 2  m (Nisini et al. 2010) Precessing molecular outflow associated with bow shocks seen in CO (Gueth et al. 1996) and H 2 (Neufeld et al. 2009): B1 is the brightest shocked region. The L1157-B1 chemically rich bow-shock