With: V. Smolcic, A. Karim,, B. Magnelli, A.Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, S. Wuyts, D. Sanders, A. Man, D. Lutz, J. Staguhn,

Slides:



Advertisements
Similar presentations
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
Advertisements

Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
The Role of Dissipation in Galaxy Mergers Sadegh Khochfar University of Oxford.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
EVIDENCE FOR A POPULATION OF HIGH REDSHIFT SUBMILLIMETER GALAXIES Joshua D. Younger Harvard/CfA.
Desika Narayanan EVLA Conference The Formation and Evolution of SMGs: A (mostly) Panchromatic View Desika Narayanan Harvard-Smithsonian Center for Astrophysics.
Kevin Bundy, Caltech The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star-Forming Galaxies Kevin Bundy R. S. Ellis,
Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
The two phases of massive galaxy formation Thorsten Naab MPA, Garching UCSC, August, 2010.
Gamma-ray Bursts in Starburst Galaxies Introduction: At least some long duration GRBs are caused by exploding stars, which could be reflected by colours.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Star Formation in High Redshift Submillimeter Galaxies and QSO Hosts Dieter Lutz MPE Elisabetta Valiante, Eckhard Sturm, Reinhard Genzel, Linda Tacconi,
Space Density of Heavily-Obscured AGN, Star Formation and Mergers Ezequiel Treister (IfA, Hawaii Ezequiel Treister (IfA, Hawaii) Meg Urry, Priya Natarajan,
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
Massive galaxies at z > 1.5 By Hans Buist Supervisor Scott Trager Date22nd of june 2007.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
Galactic Metamorphoses: Role of Structure Christopher J. Conselice.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
1 Ringberg Castle Workshop on AGN Physics, AGN hosts at 0.05
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
Deciphering the CIB 12 Oct 2012 Banyuls MODELING COUNTS AND CIBA WITH MAIN SEQUENCE AND STARBURST GALAXIES Matthieu Béthermin CEA Saclay In collaboration.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
Bruno Altieri | Toledo 2011 | 23 Nov | vg #1 Star Formation from Herschel deep surveys B. Altieri, on behalf of PEP (PACS Extragalactic Probe, PI.
1 On star-formation compactness & bulges: the ALMA view  IR (z~2) =  IR (z~0) x 6  IR (z~4) =  IR (z~0) x 12  IR (z) =  IR (z~0) x (1+z) 2.5 vs 
High-Redshift Galaxies in Cluster Fields Wei Zheng, Larry Bradley, and the CLASH high-z search group.
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
X-ray clues on the nature of sub-mm galaxies I.Georgantopoulos INAF/OABO A Comastri INAF/OABO E. Rovilos MPE.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
An Evolutionary Model of Submillimeter Galaxies Sukanya Chakrabarti NSF Fellow CFA.
Quiescent and Starbursting star-forming galaxies at z=2 Giulia Rodighiero (University of Padova) On behalf of the PEP Team Trieste - The Physics of Star.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Elizabeth Stanway - Obergurgl, December 2009 Lyman Break Galaxies as Markers for Large Scale Structure at z=5 Elizabeth Stanway University of Bristol With.
Colin Borys (Caltech) Andrew Blain (Caltech) Darren Dowell (JPL) Duncan Farrah (IPAC) Carol Lonsdale (UCSD) Tom Soifer (Caltech) Vicki Barnard (JAC) and.
The Environment of MAMBO Galaxies in the COSMOS field Manuel Aravena F. Bertoldi, C. Carilli, E. Schinnerer, H. J. McCracken, K. M. Menten, M. Salvato.
Growing black holes: from the first seeds to AGN Mar Mezcua Harvard-Smithsonian Center for Astrophysics T. Miyaji, F. Civano, G. Fabbiano, M. Karouzos,
Keck spectroscopy and dynamical masses for a large sample of 1 < z < 1.6 passive red galaxies Sirio Belli with Andrew B. Newman and Richard S. Ellis ApJ,
The Star Formation Histories of Red Sequence Galaxies Mike Hudson U. Waterloo / IAP Steve Allanson (Waterloo) Allanson, MH et al 09, ApJ 702, 1275 Russell.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini Roman Young Researchers Meeting 2009 July 21.
Major dry-merger rate and extremely massive major dry-mergers of BCGs Deng Zugan June 31st Taiwan.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
联 合 天 体 物 理 中 心 Joint Center for Astrophysics The half-light radius distribution of LBGs and their stellar mass function Chenggang Shu Joint Center for.
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Forming Proto-Elliptical z>2 ? N.Arimoto (NAOJ) Subaru/Sup-Cam C.Ikuta (NAOJ) X.Kong (NAOJ) M.Onodera (Tokyo) K.Ohta (Kyoto) N.Tamura (Durham)
What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
The interaction-driven model for the starburst galaxies and AGNs
Observing the formation and evolution of massive galaxies
Evidence for a Population of high redshift Submm Galaxies
The Presence of Massive Galaxies at z>5
HERSCHEL and Galaxies/AGN “dust and gas”
Chris Wilson, McMaster University
A Population of Old and Massive Galaxies at z > 5
Presentation transcript:

With: V. Smolcic, A. Karim,, B. Magnelli, A.Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, S. Wuyts, D. Sanders, A. Man, D. Lutz, J. Staguhn, S. Berta, H. McCracken, The highest redshift Sub-mm galaxies as progenitors of compact quiescent galaxies Sune Toft Dark Cosmology Centre Dark Group A. Zirm, A. Man, J.-K. Krogager, K. Olsen

“Connecting the Extreme”

Compact Quiescent Galaxies at z=2 (cQGs) Photometric surveys: The fraction of quiescent galaxies increases rapidly between z=3 and 2 At z=2, half of the most massive galaxies are quiescent with little ongoing star formation and evolved stellar populations n cQG =6.0±2.1 × Mpc -3 (Brammer++, 2011), Ilbert et al 2012)

Restframe optical absorption line spectroscopy Broad wavelength continuum fits: Post-Starburst with strong Balmer abs. Line indices: Metal rich, 1-2 Gyr old Velocity dispersions km/s (e.g. Toft et al 2012; van de Sande et al 2012, Onodera et al, 2012 )

Spectroscopic sample of z=2 cQGS COSMOS 3DHST+CANDLES Strong 4000A break  z-spec SED fit  M*, Av, age, zform Galfit HST/F160W  size “Complete” (Krogager, Zirm, Toft, Man & Brammer, ApJ (Submitted))

Mass-size relation (complete spectroscopic sample) (Krogager, Zirm, Toft & Brammer, 2013) 3DHST/CANDELS: The mass-size relation at z=2 is shifted to ~3 times smaller sizes at a given mass, with respect to the local relation (slope & scatter identical) >10 times larger stellar mass densities

Size evolution to z=0 Minor dry merging is likely responsible for some of the growth But other mechanisms also contribute (e.g. Carollo , Krogager ) (Newman++2013)

How did they form? NIR spectroscopy: Post-starburst spectra Baryon dominated Some dust (Av=0-1) Gyr -> zform>3 (Toft++2012, van de Sande++2012, Onodera++2012, K13) “Main sequence” star forming galaxies at z>3? SFR min >115 M  /yr from z=10 to zform >3 times higher than observed for z=3 LBGs (Carilli ) Number density of z>3 LBGs with M>10 11 M   << n cQG (Stark ) -> Progenitors must be dust obscured starbursts (Krogager++, 2013)

Dust obscured nuclear starbursts? (Hopkins ) (Wuyts ) Remnants very compact, concentrated (high sersic n) Sub-mm galaxies: Prime examples of high-z dusty nuclear starbursts Many authors have suggested a connection to cQGs (e.g. Tacconi++2006, Capak++2008, Toft++2009, Riechers++2013) Simulations of gas rich major mergers

SMGs as progenitors? cQG SMGs M*>10 11 M  >10 11 M  Int. Velocity (σ ★ )= km/sFWHM CO(1-0)= km/s =363 ±30 km/s =392 ±134 km/s =2.0 ± 0.2 kpc = 2.0 ± 0.3 kpc (2.3 ± 1.4) ×10 11 M  (2.5 ± 1.3) ×10 11 M  z form > 3 obs =2 (Tacconi et al 2006, 2008, Ivison et al 2011 van de Sande et al 2012, Toft et al 2012,, Krogager et al in prep,) At z=2 SMGs (probed through CO emission), have many similarities with cQGs (probed through their stars)

High redshift SMG sample COSMOS Aztec/JCMT/SMA sample “ Statistical Sample”: Flux (F 1.1mm >4.2mJy) & S/N (>4.5) –limited over 0.15 ☐ o Redshifts peak at =3 11 galaxies with z>3 (5 with spec-z) n(z>3) = 2.1 ± 0.4 × Mpc -3 (Smolcic et al 2012)

Redshift distribution match cQG (zform) SMG (zobs)

SMG surface brightness fits Fit 2D surface brightness profiles with galfit Stacked YJHK UltraVISTA images (WFC3/F160W where avail) Very compact, small sersic n >Half have bright multiple components

Mass-size relation z=2 cQG z>3 SMG

Duty cycle of SMG starburst 1: Assume : -SMGs are direct progenitors of cQGs -Each progenitor only undergo one SMG phase 2: Require number densities to match: Timescale of SMG starburst t burst (duty cycle) Consistent with Independent estimates t burst = Myr (gas depletion, clustering analysis, merger simulations) Relatively independent of IMF n SMG,z>3 = 2.1 ± 0.4 × Mpc -3 n q,z=2 = 6.0 ± 2.1 × Mpc -3

MIR-FIR SED fits Fit FIR SEDs with DL07 models Data: Spitzer MIPS, Herschel PACS, SPIRE, AzTEC, LABOCA, MAMBO, SMA, CARMA, PdBI Derive: LIR, SFR, Mdust, Mgas

Eddington Limited Bursts? (Younger et al 2010) z=2 cQG z>3 SMG Maximum SFR of cQGs during formation (Eddington limited burst)

Additional Stellar mass growth z=2 cQG z>3 SMG Z>3 stellar mass distribution broader than that of z=2 cQGs Ongoing starbursts in the SMG will increase their stellar mass ΔM ★ ~ M gas × η Star formation effeciency η~ (Hayward ) M gas from from M dust (derived from FIR SED fits) assuming a mass and metallicity dependent dust-to-gas ratio

Quenching by Active Galactic Nucleii? CDFS X-ray observations Deepest X-ray observations (4 million seconds) % of z=2 quiescent galaxies host AGN (Olsen, Rasmussen, Toft & Zirm, 2013 ) Stack: 50x4 Ms = 200 Ms 22%

“Connecting the Extreme” (Toft et al, 2014)

Summary Credit: HST press office

Extra slides

Star formation efficiency Gas fraction decrease by 10-15% from peak of starburst to when it is quenched Disc Merger (Hayward++, 2011)

Transition population (Barro++, 2012) Population of compact starforming galaxies at z~3 with depressed SFR and enhanced AGN fraction. Not quiet as massive, but sizes and number densities match z=2 cQGs

Descendants of z=2 SMGs (Bezanson ) Population of compact post starburst galaxies at z=1.5, with high stellar and dynamical masses and zform~2