Sullivan Algebra and Trigonometry: Section 6.4 Trig Functions of General Angles Objectives of this Section Find the Exact Value of the Trigonometric Functions.

Slides:



Advertisements
Similar presentations
Let’s extend our knowledge of trigonometric functions…
Advertisements

Angles and Degree Measure
7.4 Trigonometric Functions of General Angles
Sullivan Precalculus: Section 5.2 Trig Functions: Unit Circle
2.3 Evaluating Trigonometric Functions for any Angle JMerrill, 2009.
Trig Functions of Special Angles
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
Trigonometric Functions of Any Angle 4.4. Definitions of Trigonometric Functions of Any Angle Let  is be any angle in standard position, and let P =
Trigonometry/Precalculus ( R )
13.3 Evaluating Trigonometric Functions
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 7.4 Trigonometric Functions of General Angles.
Copyright © 2009 Pearson Addison-Wesley Acute Angles and Right Triangle.
Merrill pg. 759 Find the measures of all angles and sides
Wednesday, Jan 9, Objective 1 Find the reference angle for a given angle A reference angle for an angle is the positive acute angle made by the.
Lesson 4.4 Trigonometric Functions of Any Angle. Let  be an angle in standard position with (x, y) a point on the Terminal side of  and Trigonometric.
MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions Section 3 – Trigonometric Functions of Any Angle.
Trigonometric Functions
Copyright © 2011 Pearson, Inc. 4.3 Trigonometry Extended: The Circular Functions.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 7.4 Trigonometric Functions of General Angles.
Angles and Their Measure Section Angles Vertex Initial Side Terminal Side.
OBJECTIVES: Evaluate trigonometric functions of any angle using reference angles. Trigonometric Functions of Non-Acute Angles.
Trigonometric Functions of General Angles Section 3.4.
13.3 Trigonometric Functions of General Angles
Chapter 5 Trigonometric Functions
Trigonometry functions of A General Angle
Sullivan Algebra and Trigonometry: Section 7.2 Objectives of this Section Find the Value of Trigonometric Functions of Acute Angles Use the Fundamental.
Warm Up Use Pythagorean theorem to solve for x
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © 2009 Pearson Addison-Wesley Acute Angles and Right Triangle.
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
Chapter 4 Trigonometric Functions Trig Functions of Any Angle Objectives:  Evaluate trigonometric functions of any angle.  Use reference angles.
Warm-Up 8/26 Simplify the each radical expression
+ 4.4 Trigonometric Functions of Any Angle *reference angles *evaluating trig functions (not on TUC)
Copyright © 2011 Pearson, Inc. 4.3 Trigonometry Extended: The Circular Functions.
4.4 Trigonometric Functions of Any Angle
These angles will have the same initial and terminal sides. x y 420º x y 240º Find a coterminal angle. Give at least 3 answers for each Date: 4.3 Trigonometry.
Reference Angles. What is a Reference Angle? For any given angle, its reference angle is an acute version of that angle The values for the Trig. Functions.
Pre-Calc Book Section 5.2 Trigonometric Functions of Real Numbers
WARM UP Find the value of the angle θ in degrees:.
More Trig – Angles of Rotation Learning Objective: To find coterminal and reference angles and the trig function values of angles in standard position.
Chapter 4 Pre-Calculus OHHS.
8-1 Standards 8a - Draw angles that are negative or are larger than 180° 8b - Find the quadrant and reference angles of a given angle in standard position.
Warm-Up 3/ Find the measure of
Math Analysis Chapter Trig
4.4 Trig Functions of Any Angle Reference Angles Trig functions in any quadrant.
Pre-AP Pre-Calculus Chapter 4, Section 3 Trigonometry Extended: The Circular Functions
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 7.4 Trigonometric Functions of General Angles.
Section 7.4 Trigonometric Functions of General Angles Copyright © 2013 Pearson Education, Inc. All rights reserved.
MATH 1330 Section 4.3 Trigonometric Functions of Angles.
TRIGONOMETRY FUNCTIONS OF GENERAL ANGLES SECTION 6.3.
1 Copyright © Cengage Learning. All rights reserved. 1 Trigonometry.
Reference Angles and Trigonometric Functions of Any Angle Accelerated Pre-Calculus.
Chapter 4 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Trigonometric Functions of Any Angle.
Section 7.4 Trigonometric Functions of General Angles.
Pre-Calculus Unit #4: Day 3.  Coterminal angles are angles in standard position (angles with the initial side on the positive x-axis) that have a common.
Section 4.4 Trigonometric Functions of Any Angle.
4.4 Trig Functions of Any Angle Objectives: Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
§5.3.  I can use the definitions of trigonometric functions of any angle.  I can use the signs of the trigonometric functions.  I can find the reference.
MATH 1330 Section 4.3.
Do Now.
All Six Trigonometric Functions
Trigonometric Functions of Any Angle
Evaluating Trigonometric Functions
Section 4.3 Trigonometric Functions of Angles
MATH 1330 Section 4.3.
Right Triangle Trigonometry
Introduction to College Algebra & Trigonometry
Y x r (a, b).
12.3 Day 1 Notes Trigonometric Functions of General Angles
Solving for Exact Trigonometric Values Using the Unit Circle
Presentation transcript:

Sullivan Algebra and Trigonometry: Section 6.4 Trig Functions of General Angles Objectives of this Section Find the Exact Value of the Trigonometric Functions for General Angles Determine the Sign of the Trigonometric Functions of an Angle in a Given Quadrant Use Coterminal Angles to Find the Exact Value of a Trigonometric Function Find the Reference Angle of a General Angle Use the Theorem of Reference Angles

provided no denominator equals 0.

(a, b) r x y

Find the exact value of each of the six trigonometric functions of a positive angle if (-2, 3) is a point on the terminal side. (-2, 3) x y

P= (1, 0) P= (a, b) x y

P= (0,1) x y

x y (a, b) a 0 r a > 0, b > 0, r > 0 a 0, r > 0 a > 0, b 0

I (+, +) All positive x y

Two angles in standard position are said to be coterminal if they have the same terminal side. x y

Let denote a nonacute angle that lies in a quadrant. The acute angle formed by the terminal side of and either the positive x-axis or the negative x-axis is called the reference angle for Reference Angle

Finding the reference angle 2. Determine the quadrant in which the terminal side of the angle formed by the angle lies.

x y

Reference Angles

Find the exact value of each of the following trigonometric functions using reference angles: