1. М. С. Лифшиц, ЖЭТФ (1957). 2. U.Fano, Phys. Rev. 124, 1866 (1961). 3. H. Feshbach,, Ann. Phys. (New York) 5 (1958) 357; 19 (1962) 287. 4. C. Mahaux,

Slides:



Advertisements
Similar presentations
Dielectric optics (guiding, confining, manipulating light) Slab waveguides Cylindrical waveguides (wires for light) Rectangular waveguides Coupled rectangular.
Advertisements

Spectroscopy on Atoms and selection rules. Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 I - What is.
Chaotic Scattering in Open Microwave Billiards with and without T Violation Porquerolles 2013 Microwave resonator as a model for the compound nucleus.
Spectroscopy at the Particle Threshold H. Lenske 1.
SCUOLA INTERNAZIONALE DI FISICA “fermi" Varenna sul lago di como
Integrated High Order Filters in AlGaAs Waveguides with up to Eight Side-Coupled Racetrack Microresonators Rajiv Iyer ‡, Francesca Pozzi †, Marc Sorel.
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Collective Response of Atom Clusters and Nuclei: Role of Chaos Trento April 2010 Mahir S. Hussein University of Sao Paulo.
Super - Radiance, Collectivity and Chaos in the Continuum Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Workshop on Level Density.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Analysis of the Propagation of Light along an Array of Nanorods Using the Generalized Multipole Technique Nahid Talebi and Mahmoud Shahabadi Photonics.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
1 Can Waves Be Chaotic? Jen-Hao Yeh, Biniyam Taddese, James Hart, Elliott Bradshaw Edward Ott, Thomas Antonsen, Steven M. Anlage Research funded by AFOSR.
Anderson localization in BECs
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
1 Overview of the Random Coupling Model Jen-Hao Yeh, Sameer Hemmady, Xing Zheng, James Hart, Edward Ott, Thomas Antonsen, Steven M. Anlage Research funded.
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Pattern Formation Induced by Modulation Instability in Nonlinear Optical System Ming-Feng Shih( 石明豐 ) Department of Physics National Taiwan University.
Gabriel Cwilich Yeshiva University NeMeSyS Symposium 10/26/2008 Luis S. Froufe Perez Ecole Centrale, Paris Juan Jose Saenz Univ. Autonoma, Madrid Antonio.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
420 nm [ Notomi et al. (2005). ] Resonance an oscillating mode trapped for a long time in some volume (of light, sound, …) frequency  0 lifetime  >>
Non-reciprocity without magneto-optics: a tutorial
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
2013 | Institute of Nuclear Physics Darmstadt/SFB 634 | Achim Richter | 1 Exceptional Points in Microwave Billiards with and without Time- Reversal Symmetry.
NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe.
Theory of Intersubband Antipolaritons Mauro F
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Thanks go to many collaborators. In nuclear reaction theory (excluding fission and precompound reactions) the main contributors were C. Mahaux C. A. Engelbrecht.
Electronic Conduction of Mesoscopic Systems and Resonant States Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo Collaborators: Akinori.
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
Green’s Function Monte Carlo Method in a nutshell.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Quantum Measurement Theory on a Half Line
Bound States Embedded in the Continuum in Nuclear and Hadronic Systems H. Lenske Institut für Theoretische Physik, U. Giessen and GSI Darmstadt 1.
Theoretical study of ion-pair formation in electron recombination with H 3 + Royal Society Discussion meeting on Physics, Chemistry and Astronomy of H.
КВАНТОВЫЙ ТРАНСПОРТ В ПОЛУПРОВОДНИКОВЫХ МИКРОСТРУКТУРАХ 1.ГЕТЕРОСТРУКТУРЫ. Home made quantum mechanics 2.ОТКУДА БЕРЕТСЯ СОПРОТИВЛЕНИЕ ПРИ Т=0. Формула.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Denis Bulaev Department of Physics University of Basel, Switzerland Spectral Properties of a 2D Spin-Orbit Hamiltonian.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
Investigation of Wigner reaction matrix, cross- and velocity correlators for microwave networks M. Ławniczak, S. Bauch, O. Hul, A. Borkowska and L. Sirko.
Probing Anderson Localization via Fidelity via Fidelity Probing Anderson Localization via Fidelity via Fidelity Joshua D. Bodyfelt in collaboration with.
Probing Anderson Localization in Absorptive Systems with Fidelity Department of Physics Complex Quantum Dynamics and Mesoscopic Physics Group Joshua D.
Electron transport in quantum wires subjected to the Rashba SOI
Michigan State University
This relation has been checked in numerous precision experiments.
Four wave mixing in submicron waveguides
Discussion today Over the next two class periods we will be designing a ring resonator based 2-channel wavelength division multiplexing (WDM) optical link.
Quantum Phase Transition of Light: A Renormalization Group Study
Plasmonic waveguide filters with nanodisk resonators
Open quantum systems.
Faucet for wave transmission through rotation of waveguide
Anderson localization of weakly interacting bosons
Discussion today Over the next two class periods we will be designing a ring resonator based 2-channel wavelength division multiplexing (WDM) optical link.
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
On the collapses and revivals in the Rabi Hamiltonian
Dynamical mean field theory: In practice
Quantum states of a diatomic molecule H2+ with stationary nuclei
Spin-triplet molecule inside carbon nanotube
Multifractality in delay times statistics
Presentation transcript:

1. М. С. Лифшиц, ЖЭТФ (1957). 2. U.Fano, Phys. Rev. 124, 1866 (1961). 3. H. Feshbach,, Ann. Phys. (New York) 5 (1958) 357; 19 (1962) C. Mahaux, H.A. Weidenmuller, (Shell-Model Approach to Nuclear Reactions), North-Holland, Amsterdam, I.Rotter, Rep. Prog. Phys., 54, 635 (1991). 6. S.Datta, (Electronic transport in mesoscopic systems) (1995). 7. S. Albeverio, et al J.Math. Phys. 37, 4888 (1996). 8. Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918 (1997) 9. F. Dittes, Phys. Rep. (2002). 10. Sadreev and I. Rotter, J.Phys.A (2003). 11. J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374, 271(2003). 12. D.V. Savin, V.V. Sokolov V.V., and H.-J. Sommers, PRE (2003). 13. Sadreev, J.Phys.A (2012). Coupled mode theory (оптика) H.A.Haus, (Waves and Fields in Optoelectronics) (1984). C. Manolatou, et al, IEEE J. Quantum Electron. (1999). S. Fan, et al, J. Opt. Soc. Am. A20, 569 (2003). S. Fan, et al, Phys. Rev. B59, (1999). W. Suh, et al, IEEE J. of Quantum Electronics, 40, 1511 (2004). Bulgakov and Sadreev, Phys. Rev. B78, (2008). Подход эффективного гамильтониана

Coupled defect mode with propagating over waveguide light Manolatou, et al, IEEE J. Quant. Electronics, (1999)

Coupled mode theory Одно модовый резонатор

CMT Х. Хаус, Волны и поля в оптоэлектронике Одно-модовый резонатор Инверсия по времени

CMT Много-модовый резонатор 40, 1511 (2004) IEEE J. Quantum Electronics, 40, 1511 (2004)

Два порта, две моды %CMT for transmission through resonator with two modes clear all E=-2:0.01:2; D=[sqrt(0.1) sqrt(0.25) sqrt(0.1) sqrt(0.25)]; G=0.5*D'*D; H0=diag([ ]); H=H0-1i*G; for j=1:length(E) Q=E(j)*diag([1 1])-H; in=[1; 0]; IN=1i*D'*in; A=Q\IN;; A1(j)=A(1); A2(j)=A(2); t(:,j)=-in+D*A; end

T волновод с двумя резонаторами, Булгаков, Садреев, Phys. Rev. B84, (2011)

W is matrix NxM where N is the number of eigen states of closed quantum system, M is the number of continuums (channels)

S.Datta, (Electronic transport in mesoscopic systems) (1995).

Уравнение Липпмана-Швингера Проекционные операторы :

S-matrix Basis of closed billiard The biorthogonal basis

c H.-W.Lee, Generic Transmission Zeros and In-Phase Resonances in Time-Reversal Symmetric Single Channel Transport, Phys. Rev. Lett. 82, 2358 (1999)

2d case Limit to continual case

Matlab calculation Na=input('input length along transport Na=') Nb=input('input length cross to transport Nb=') Nin=input('input numerical position of the input lead Nin=') Nout=input('input numerical position of the output lead Nout=') NL=length(Nin); NR=length(Nout); vL=1; vR=vL; tb=1; %Leads E=-2.9:0.011:1; HL=zeros(NL,NL); HL=HL-diag(ones(1,NL-1),1); HL=HL+HL'; HL=HL-diag(sum(HL),0); for np=1:NL kpp=acos(-E/2+EL(np,np)/2); kp(np,1:length(E))=kpp; end HR=HL; %Dot N=Na*Nb; HB=zeros(N,N); HB=HB-diag(ones(1,N-1),1)-diag(ones(1,N-Na),Na); HB(Na:Na:N-Na,Na+1:Na:N-Na+1)=0; HB=tb*(HB+HB'); %Coupling matrix psiBin=psiB(Nin,:); psiBout=psiB(Nout,:); WL=vL*psiBin'*psiL'; WR=vR*psiBout'*psiL'; DB=diag(ones(Na*Nb,1)); for j=1:length(E) g=diag(exp(i*kp(:,j))); gg=diag(sin(real(kp(:,j))).^0.5); WW=WL*g*WL'+WR*g*WR'; Heff=diag(EB)-WW; QQ=DB*E(j)-Heff; PP=QQ^(-1); SS=2*i*(WL*gg)'*PP*WR*gg; t(n,j)=SS(1,1); psS=psiB*PP*WL;

Datta’s site representation

Effective Hamiltonian for time-periodic case For stationary case

Волновая функция полубесконечного m-го провода N=1

Numerical results N=1 m=-1, 0, 1 21 quasi energies BS, J. Phys. C (1999): Критерий применимости теории возмущений H. Fukuyama, R. A. Bari, and H.C. Fogedby, PRB (1973).  v C =0.25