ALMA Timeline  Design and Development Phase Jun 1998 - Dec 2001  International partnership established 1999  Prototype antenna contract Dec 99  ALMA/NA.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
Studying circumstellar envelopes with ALMA
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
A Search For Fragmentation in Starless Cores with ALMA Scott Schnee (NRAO) Hector Arce, Tyler Bourke, Xuepeng Chen, James Di Francesco, Michael Dunham,
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
The Green Bank Telescope a powerful instrument for enhancing ALMA science Unblocked Aperture Low sidelobes gives high dynamic range Resistance to Interference.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
MOLECULAR GAS and DUST at the CENTER of the EGG NEBULA Jeremy Lim and Dinh-V-Trung (Institute of Astronomy & Astrophysics, Academia Sinica, Taiwan) Introduction.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
The ALMA Level One Science Goals Al Wootten NRAO; ALMA/NA Project Scientist The highest level document governing the Atacama Large Millimeter Array (ALMA)
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
Water maser emission in Bok globules Bok Globules Bok globules are small (
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
Radio Interferometry and ALMA T. L. Wilson ESO. A few basics: Wavelength and frequency  -1 temperature max (mm) ~ 3/T(K) (for blackbody) Hot gas radiates.
Atacama Large Millimeter Array October 2004DUSTY041 Scientific requirements of ALMA, and its capabilities for key-projects: extragalactic Carlos.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
Moscow presentation, Sept, 2007 L. Kogan National Radio Astronomy Observatory, Socorro, NM, USA EVLA, ALMA –the most important NRAO projects.
Basic Concepts An interferometer measures coherence in the electric field between pairs of points (baselines). Direction to source Because of the geometric.
Molecular Clouds in in the LMC at High Resolution: The Importance of Short ALMA Baselines T. Wong 1,2,4, J. B. Whiteoak 1, M. Hunt 2, J. Ott 1, Y.-N. Chin.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
What does Ammonia trace in Egg Nebula Pao-Jan Chiu Pao-Jan Chiu With Jeremy Lim
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
Protoplanetary and Debris Disks A. Meredith Hughes Wesleyan University.
ALMA observations of Molecules in Supernova 1987A
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
High Resolution Submm Observations of Massive Protostars
Spiral density waves in a young protoplanetary disk
Presentation transcript:

ALMA Timeline  Design and Development Phase Jun Dec 2001  International partnership established 1999  Prototype antenna contract Dec 99  ALMA/NA delivered to VLA site Q  ALMA/EU delivery Q  Construction  Production antenna contract Q  Production antenna in Chile Q  Interim operations fourth quarter 2007  Construction ends 2010 The Atacama Large Millimeter Array ALMA Specifications ALMA Median Sensitivity (1 minute; AM=1.3; PWV= 1.5mm) Formation of Stars Paradigm: material falls through a rotating circumstellar disk onto a forming star from more extensive envelope, fuelling a bipolar flow which allows loss of angular momentum (see HH30 disk, far right at best current resolution). Without sufficient resolution, separation of these motions is difficult A key observation, not currently achievable, would be to observe the infalling gas in absorption against the background protostar. As molecular depletion may occur in the densest regions (c.f. NH 3 in IRAM04191 at left) sensitivity is critical to detection; ALMA will easily provide the sensitivity for this. In the bipolar flow, shock waves process envelope molecules, providing a rich chemistry--ALMA will be able to observe the progress of these shocks in real time and study how their composition changes. Debris Disks The model is a simulated modestly-bright debris disk at a distance of 12 pc located around a Sun-like star. The observing frequency is 345 GHz, at which the total emission is 10 mJy. The disk has an inner radius at 3 AU and an outer radius at 125 AU, with a mass of roughly 0.4 lunar masses of dust. This is a fairly dusty system, of which perhaps a dozen might be available. Protoplanetary Disks ALMA will be able to trace the chemical evolution of star-forming regions over an unprecedented scale from cloud cores to the inner circumstellar disk. At spatial resolution of 5 AU, it will determine the nature of dust-gas interactions the extent of the resulting molecular complexity, and the major reservoirs of the biogenic elements. Angular resolution will exceed that of the HST. On the right above, a model image; on the left a simulation of how ALMA will image the model. ALMA Simulation of Debris Disk Image: Fidelity The debris disk model is spread over several primary beamwidths of the ALMA antenna. Imaging the disk would pose a problem for current interferometers, which do not recover short spacing data from the antennas operating as single units. ALMA will incorporate this data to provide high fidelity images. The simulation results shown above use software developed at IRAM with image reconstruction using a CLEAN technique. The simulations is done for a frequency of 230 GHz with ALMA in its most compact configuration, so the resolution provided is a bit over one arcsecond, insufficient to show the fine detail in the model. Thermal noise has not been included in this simulation. Image fidelity is the ratio of the model to the difference (model – simulated) image, so higher numbers reflect more accurate quality. On the right, cumulative fidelity is plotted and evaluated for four fidelity medians. For a wide range of medians, the fidelity measure lies near 100, showing that ALMA images will be of quite high quality indeed. Further improvement of the images is possible by the addition to ALMA of a small (~12) array of smaller (7-8m) antennas, outside the scope of the current project but a likely enhancement should a third partner join ALMA. Simulation: Structural Details Modeling: Lee Mundy ALMA Memo No. 386 & 387 IRAM Green: NH 3 (1,1) VLA; Red/Blud: 12 CO 2-1 NRAO 12m CO(2-1) contours superimposed on an HST image of HH 30. The HST observations in false colors (from Burrows et al. 1996) show the optical continuum emission tracing the reflected light in the flared circumstellar disk, together with the emission of bright atomic lines ([SII], Ha, [OI]), tracing a highly collimated jet, perpendicular to the disk. The contours represent the CO(2-1) emission, as observed with the IRAM Plateau de Bure interferometer with an angular resolution of 1.2”×0.7” by Gueth et al. in prep. Only the channel map at a velocity of 11 km/s is plotted (contours are 80 mJy/beam). It shows the conical molecular outflow emanating out of the disk and surrounding the jet. The cross indicates the position of the peak of the 1.3 mm continuum emission. HH 30: Overlay of the integrated 13 CO 2-1 emission (contours) on the HST/WFPC2 image (color). A cross marks the position of the 1.3 mm continuum source. Stapelfeldt and Padgett (2001) inWootten, A., ASP Conf. Ser. 235: Science with the Atacama Large Millimeter Array, 163. Simulations of an ALMA observation of the debris disk using multi-scale CLEAN in the aips++ package. On the left, an observation with the compact array, stretched to show the structures in the disk in a four hour integration. On the right, a 4 hour observation with the 450m array, which achieves higher resolution. Thermal noise limits sensitivity. A combination of these two observations would afford the best representation of the original image. Clearly, in one transit ALMA would be able to constrain 1) the photospheric flux of the central star (not resolved from inner dust in these compact configurations), 2) the general structure of the disk—suggesting the presence of planets and 3) the total dust mass of the disk, as all of the flux is recovered in the image. Tdust at 1 AU = 350 K Tdust power law index q = 0.45 Surface density power law index = 1.3 Inclination = 45 degrees Feature Amplitude Radius (AU) Width (AU) PA (deg) Dark Ring Dark Ring Planet Debris Planet Debris