1 CSCD 330 Network Programming Spring 2014 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 Lecture 7 Application.

Slides:



Advertisements
Similar presentations
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r Sockets are explicitly created, used, released by applications.
Advertisements

Network Programming and Java Sockets
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
2: Application Layer 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
9/23/2003-9/25/2003 Sockets & DNS September 23-25, 2003.
1 Creating a network app Write programs that  run on different end systems and  communicate over a network.  e.g., Web: Web server software communicates.
2: Application Layer1 Data Communication and Networks Lecture 12 Java Sockets November 30, 2006.
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
1 Overview r Socket programming with TCP r Socket programming with UDP r Building a Web server.
1 Review of Previous Lecture r Electronic Mail r DNS r P2P file sharing.
Internet and Intranet Protocols and Applications Lecture 4: Application Layer 3: Socket Programming February 8, 2005 Arthur Goldberg Computer Science Department.
2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim.
Lecture 11 Java Socket Programming CPE 401 / 601 Computer Network Systems slides are modified from Dave Hollinger and Joonbok Lee.
Socket programming with UDP and TCP. Socket Programming with TCP Connection oriented – Handshaking procedure Reliable byte-stream.
2: Application Layer1 Socket Programming. 2: Application Layer2 Socket-programming using TCP Socket: a door between application process and end- end-transport.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1 Network Layers Application Transport Network Data-Link Physical bits.
Protocols Rules for communicating between two entities (e.g., a client and a server) “A protocol definition specifies how distributed system elements interact.
Welcome to CIS 235 Computer Networks Fall, 2007 Prof Peterson.
2: Application Layer 1 Socket Programming Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
JAVA Socket Programming Joonbok Lee KAIST.
2: Application Layer 1 Socket Programming TCP and UDP.
JAVA Socket Programming Source: by Joonbok Lee, KAIST, 2003.
ECE5650: Network Programming
1 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
CS 3830 Day 11 Introduction : Application Layer 2 Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, u s = 10u, d min ≥ u s.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Winter 2002Suprakash Datta1 Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Associate Professor, Computer Science.
1 CSCD 330 Network Programming Winter 2015 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 6 Application.
Socket Programming Lee, Sooyong
Network Programming and Sockets CPSC 363 Computer Networks Ellen Walker Hiram College (Includes figures from Computer Networking by Kurose & Ross, © Addison.
Socket Programming Tutorial. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
Java Socket programming. Socket programming with TCP.
NETWORK PROGRAMMING.
Socket-Programming.  Establish contact (connection).  Exchange information (bi-directional).  Terminate contact.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API Explicitly created, used, released by apps Client/server paradigm Two types of transport service via.
Chapter 2 Application Layer Application 2-1. Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic.
1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
1 COMP 431 Internet Services & Protocols Client/Server Computing & Socket Programming Jasleen Kaur February 2, 2016.
1 CSCD 330 Network Programming Fall 2013 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 8a Application.
1 CSCD 330 Network Programming Winter 2016 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 6 Application.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 11 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 All rights reserved to Chun-Chuan Yang Upon completion you will be able to: The OSI Model and the TCP/IP Protocol Suite Understand the architecture of.
2: Application Layer1 Network applications: some jargon Process: program running within a host. r within same host, two processes communicate using interprocess.
Topic: Network programming
Socket Programming Socket Programming Overview
Transport layer (last part) Application layer
DNS: Domain Name System
Socket programming with TCP
Chapter 2: outline 2.1 principles of network applications
Socket programming - Java
CSCD 330 Network Programming
Socket Programming Socket Programming Overview
Socket Programming.
CSCD 330 Network Programming
Java Socket Programming
Socket Programming 2: Application Layer.
DNS: Domain Name System
CSCD 330 Network Programming
CPSC 441 UDP Socket Programming
Chapter 2: Application layer
DNS: Domain Name System
DNS: Domain Name System
Socket Programming with UDP
Presentation transcript:

1 CSCD 330 Network Programming Spring 2014 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 7 Application Layer – Socket Programming in Java Reading: Chapter 2 – Still

Review Client/Server Programming So far, Host has IP Address Network Layer identifier Every network “device” has this identifier Phone, Toaster, etc. Processes running on Hosts Assigned a port number Port numbers identifiers for processes Some port numbers reserved System reserves these Other port numbers reserved for widely recognized processes ers#Dynamic.2C_private_or_ephemeral_ports:_49152.E Firefox HTTP 80

Review Client/Server Programming Communication Between Client/Server Uses object, “Socket” Socket is the API between a program and the TCP/IP stack of the OS It has an input stream and an output stream built in to it Both the client and server define different ends of this socket Link to the Java.net Package API /Socket.html

TCP/IP Client/Server How this works in Java Server Socket 1. Binds socket to specific port number 2. Listens for incoming connections on that port 3. When connection attempted, it accepts connection, creates a regular socket for communication to client 4. Port number is different and selected by stack software

TCP/IP Client/Server Java Code for Server ss = new ServerSocket (port); // Loop forever While (true) { // Get a connection Socket newSocket = ss.accept (); // Deal with the connection //.... } Server socket listens on a port Inside loop waits for connection Creates a new socket object representing new connection What is not obvious is that the new connection is through a different port number

TCP/IP Client/Server Java code for Client, Send/Receive Data // Create a socket for communicating with server Socket clientSocket = new Socket ("hostname", 6789); // Create data streams for communicating through the socket BufferedReader in = new BufferedReader (new InputStreamReader (clientSocket.getInputStream ()); PrintWriter out = new PrintWriter (clientSocket.getOutputStream ()); System.out.println (in.readLine ()); // Print output to screen Then, create streams to send input and get it back from server Create a client TCP socket, with host and port

7 Example: Java client (TCP)‏ import java.io.*; import java.net.*; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modifiedSentence; BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); Socket clientSocket = new Socket("hostname", 6789); DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream()); Create input stream Create client socket, connect to server Create output stream attached to socket

8 Example: Java client (TCP) BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = inFromUser.readLine(); outToServer.writeBytes(sentence + '\n'); modifiedSentence = inFromServer.readLine(); System.out.println ("FROM SERVER: " + modifiedSentence ); clientSocket.close(); } Create input stream attached to socket Send line to server Read line from server

9 Example: Java server (TCP)‏ import java.io.*; import java.net.*; class TCPServer { public static void main(String argv[]) throws Exception { String clientSentence; String capitalizedSentence; ServerSocket welcomeSocket = new ServerSocket(6789); while(true) { Socket connectionSocket = welcomeSocket.accept(); BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); Create welcoming socket at port 6789 Waits, on welcoming socket for contact by client Create input stream, attached to socket

10 Example: Java server (TCP) DataOutputStream outToClient = new DataOutputStream(connectionSocket.getOutputStream()); clientSentence = inFromClient.readLine(); capitalizedSentence = clientSentence.toUpperCase() + '\n'; outToClient.writeBytes(capitalizedSentence); } Read in line from socket Create output stream, attached to socket Write out line to socket End of while loop, loop back and wait for another client connection

UDP

12 UDP Socket Programming UDP no real “connection” between client and server No handshaking Sender attaches IP address and destination port to each packet Server must extract IP address and port of sender from received packet, so answer can be sent back! UDP, transmitted data may be – Received out of order, or – Lost

13 Client/server socket interaction: UDP close clientSocket Server (running on hostid ) ‏ read reply from clientSocket create socket, clientSocket = DatagramSocket()‏ Client Create, address ( hostid, port=50)‏ send datagram request using clientSocket create socket, port= 50, for incoming request: serverSocket = DatagramSocket()‏ read request from serverSocket write reply to serverSocket specifying client host address, port number

14 UDP Summary No connection setup – no “pipe” Main Differences, TCP: 1. Each batch of bytes sent with attached address information 2. No special ServerSocket class in java Client Server

UDP Summary Create a Packet Push it out into the network through a socket Server accepts the packet addressed to him Mail is a lot like UDP Each letter needs the address of the destination Independent letters sent to the same address

16 Java Classes for UDP Datagrams for connectionless protocol Two classes implement datagrams in Java: java.net.DatagramPacket java.net.DatagramSocket DatagramPacket is actual packet of information, an array of bytes, that is transmitted over the network. DatagramSocket is socket that sends and receives DatagramPackets across the network. Think of DatagramPacket as a letter and DatagramSocket as the mailbox that the mail carrier uses to pick up and drop off your letters Need both classes for UDP sockets

17 Java Classes for UDP DatagramPacket class provides programmer with two constructors. First is for DatagramPackets that receive data Constructor needs Array to store the data Amount of data to receive Second is for DatagramPackets that send data Constructor needs Array to store the data Amount of data to send Plus destination address and port number

18 Java Classes for UDP DatgramSocket represents connectionless socket It provides two constructors, 1. Programmer can specify a port OR 2. Allow system to randomly use a port Methods Two most important methods, send() and receive()‏ Each takes an argument of a constructed DatagramPacket send() method Data in packet is sent to specified host and port receive() method Will block execution until a packet is received by underlying socket, then data copied into packet provided

19 Sentence Capitalizer (Again)‏ Example: Java client (UDP)‏ import java.io.*; import java.net.*; class UDPClient { public static void main(String args[]) throws Exception { BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); DatagramSocket clientSocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] sendData = new byte[1024]; byte[] receiveData = new byte[1024]; String sentence = inFromUser.readLine(); sendData = sentence.getBytes(); Create input stream Create client socket Translate hostname to IP address using DNS Keyboard

20 Example: Java client (UDP), cont. DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876); clientSocket.send(sendPacket); DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); clientSocket.receive(receivePacket); String modifiedSentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedSentence); clientSocket.close(); } Create datagram with data-to-send, length, IP addr, port Send datagram to server Read datagram from server

21 Sentence Capitalizer (Again)‏ Example: Java server (UDP)‏ import java.io.*; import java.net.*; class UDPServer { public static void main(String args[]) throws Exception { DatagramSocket serverSocket = new DatagramSocket(9876); byte[] receiveData = new byte[1024]; byte[] sendData = new byte[1024]; while(true) { DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); serverSocket.receive(receivePacket); Create datagram socket at port 9876 Create space for received datagram Receive datagram

22 Example: Java server (UDP), cont String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivePacket.getAddress(); int port = receivePacket.getPort(); String capitalizedSentence = sentence.toUpperCase(); sendData = capitalizedSentence.getBytes(); DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, port); serverSocket.send(sendPacket); } Get IP addr port #, of sender Write out datagram to socket End of while loop, loop back and wait for another datagram Create datagram to send to client

23 Summary Brief coverage of Java sockets - TCP/UDP Should be enough to get started Examples will be available as links on the main class page Will cover threads next First assignment will be a multi-threaded Web Server … Also, will practice client-server in the lab Do read references in RelatedLinks for more information

24 Assignment is up, WebServer