Numerical Relativity is still Relativity ERE Salamanca 2008 Palma Group Alic, Dana · Bona, Carles · Bona-Casas, Carles.

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

A New Perspective on Covariant Canonical Gravity Andrew Randono Center for Relativity University of Texas at Austin.
Numerical Relativity & Gravitational waves I.Introduction II.Status III.Latest results IV.Summary M. Shibata (U. Tokyo)
GI PERTURBATIONS, UNITARITY AND FRAME INDEPENDENCE IN HIGGS INFLATION ˚ 1˚ Tomislav Prokopec, ITP Utrecht University T. Prokopec and J. Weenink, e-Print:
Maximal Slicing of Schwarzschild or The One-Body-Problem of Numerical Relativity Bernd Reimann Mexico City, 8/12/2003 ICN, UNAM AEI.
General Relativistic Hydrodynamics with Viscosity Collaborators: Matthew D. Duez Stuart L. Shapiro Branson C. Stephens Phys. Rev. D 69, (2004) Presented.
Recent results with Goddard AMR codes Dae-Il (Dale) Choi NASA/Goddard, USRA Collaborators J. Centrella, J. Baker, J. van Meter, D. Fiske, B. Imbiriba (NASA/Goddard)
Toward Binary Black Hole Simulations in Numerical Relativity Frans Pretorius California Institute of Technology BIRS Workshop on Numerical Relativity Banff,
Hard and easy components of collision search in the Zémor- Tillich hash function: New attacks and reduced variants with equivalent security Christophe.
BSSN: why/when does it work? Miguel Alcubierre Mexico City, May 2002.
Well-Posedness Constrained Evolution of 3+1 formulations of General Relativity Vasileios Paschalidis (A. M. Khokhlov & I.D. Novikov) Dept. of Astronomy.
Pennsylvania State University Joint work at Southampton University Ulrich Sperhake Ray d’Inverno Robert Sjödin James Vickers Cauchy characteristic matching.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
Nonrigid Registration
Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue in collaboration with Pablo Cerdá-Durán Harald Dimmelmeier.
Cosimo Stornaiolo INFN-Sezione di Napoli MG 12 Paris July 2009.
Categorizing Approaches to the Cosmological Constant Problem
1 A New Technique for Deriving Electric Fields from Sequences of Vector Magnetograms George H. Fisher Brian T. Welsch William P. Abbett David J. Bercik.
/08/2002SMARTER meeting 1 Solution of 2D Navier-Stokes equations in velocity-vorticity formulation using FD Remo Minero Scientific Computing Group.
Gravitational Physics Personnel:C. R. Evans B. Brill T. Garrett M. Peppers ResearchSources of Gravitational Radiation Interests:Numerical Relativity &
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Grover. Part 2 Anuj Dawar. Components of Grover Loop The Oracle -- O The Hadamard Transforms -- H The Zero State Phase Shift -- Z.
1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Joan Centrella NASA/GSFC Bernard’s Cosmic Stories June 2006 Valencia, Spain.
1 A New Technique for Deriving Electric Fields from Sequences of Vector Magnetograms George H. Fisher Brian T. Welsch William P. Abbett David J. Bercik.
Optimization NLFFF Model J.McTiernan SSL/UCB HMI/SDO 27-Jan-2005.
Implementation of 2D FDTD
Zhaorui Li and Farhad Jaberi Department of Mechanical Engineering Michigan State University East Lansing, Michigan Large-Scale Simulations of High Speed.
Stratified Magnetohydrodynamics Accelerated Using GPUs:SMAUG.
Lamb shift in Schwarzschild spacetime Wenting Zhou & Hongwei Yu Department of Physics, Hunan Normal University, Changsha, Hunan, China.
Towards the Physics of Consciousness
Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)
2次ゲージ不変摂動論定式化の進行状況 Kouji Nakamura (Grad. Univ. Adv. Stud. (NAOJ)) References : K.N. Prog. Theor. Phys., vol.110 (2003), 723. (gr-qc/ ). K.N. Prog.
A New Code for Axisymmetric Numerical Relativity Eric Hircshmann, BYU Steve Liebling, LIU Frans Pretorius, UBC Matthew Choptuik CIAR/UBC Black Holes III.
Smoothed Particle Hydrodynamics (SPH) Fluid dynamics The fluid is represented by a particle system Some particle properties are determined by taking an.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 2. Magnetic field, Grad-Shafranov Equation Basic quantities, equilibrium, field line Hamiltonian,
Cosmological Perturbations in the brane worlds Kazuya Koyama Tokyo University JSPS PD fellow.
Albert-Einstein-Institut Black Hole Initial Data for Evolution Distorted Black Holes: “Brill Wave plus Black Hole” (NCSA model)
1+log slicing in gravitational collapse. Ingredients of successful binary black hole simulations Pretorius Generalized harmonic coordinates Excision ____________________________.
Stable, Circulation- Preserving, Simplicial Fluids Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun.
Ed Seidel Albert Einstein Institute Sources of Gravitational Radiation A.1 Development of CACTUS n Training in the use of the Cactus.
1 Calculating Gravitational Wave Signatures from Black Hole Binary Coalescence Joan Centrella Laboratory for High Energy Astrophysics NASA/GSFC The Astrophysics.
1 Building Bridges: CGWA Inauguration 15 December 2003 Lazarus Approach to Binary Black Hole Modeling John Baker Laboratory for High Energy Astrophysics.
Boson Star collisions in GR ERE 2006 Palma de Mallorca, 6 September 2006 Carlos Palenzuela, I.Olabarrieta, L.Lehner & S.Liebling.
Initial data for binary black holes: the conformal thin- sandwich puncture method Mark D. Hannam UTB Relativity Group Seminar September 26, 2003.
Cactus Workshop - NCSA Sep 27 - Oct Cactus For Relativistic Collaborations Ed Seidel Albert Einstein Institute
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Conserved Quantities in General Relativity A story about asymptotic flatness.
Leading order gravitational backreactions in de Sitter spacetime Bojan Losic Theoretical Physics Institute University of Alberta IRGAC 2006, Barcelona.
Phase transition induced collapse of Neutron stars Kim, Hee Il Astronomy Program, SNU 13th Haengdang Symposium, 11/30/2007.
Binary systems as sources of gravitational waves
New variables for brane-world gravity László Á. Gergely University of Szeged, Hungary Albert Einstein Century Internatonal Conference, Paris, 2005 Early.
3-D nonhydrostatic numerical modelling of strongly nonlinear internal waves V. Maderich, M. Zheleznyak, E. Terletska, V. Koshebutskyy, M. Morgunov IMMSP,
homogeneous coordinates equationmisc point(w ; x, y, z)r w = S 0 where S 0 = xi + yj + zk  3 points in 3D space.
Principal Component Analysis Zelin Jia Shengbin Lin 10/20/2015.
Takaaki Nomura(Saitama univ)
Carles Bona Tomas Ledvinka Carlos Palenzuela Miroslav Zacek Mexico, December 2003 Checking AwA tests with Z4 ( comenzando la revolucion rapida) ( comenzando.
§1.4 Curvilinear coordinates Christopher Crawford PHY
Gauge conditions for black hole spacetimes Miguel Alcubierre ICN-UNAM, Mexico.
BLACK HOLES. BH in GR and in QG BH formation Trapped surfaces WORMHOLES TIME MACHINES Cross-sections and signatures of BH/WH production at the LHC I-st.
§1.4 Affine space; Curvilinear coordinates Christopher Crawford PHY
Numerical Relativity in Cosmology - my personal perspective - Yoo, Chulmoon ( Nagoya U. ) with Hirotada Okawa ( Lisbon, IST ) New Perspectives on Cosmology.
Geometrically motivated, hyperbolic gauge conditions for Numerical Relativity Carlos Palenzuela Luque 15 December
1 Toward the 2 nd order self-force Eran Rosenthal University of Guelph, Canada.
Digital Image Processing
Manuel Tiglio Hearne Institute for Theoretical Physics
THE METHOD OF LINES ANALYSIS OF ASYMMETRIC OPTICAL WAVEGUIDES Ary Syahriar.
Computational Photonics
Grover. Part 2 Anuj Dawar.
Ions in ATF ISG-X June 20th, 2003.
Presentation transcript:

Numerical Relativity is still Relativity ERE Salamanca 2008 Palma Group Alic, Dana · Bona, Carles · Bona-Casas, Carles

Long term evolutions: –Harmonic (4D spacetime, excision, harmonic gauge source functions) –BSSN (3+1 decomposition, punctures/excision, 1+log and gamma freezing) Isn ’ t the gauge choice too limited? Shouldn ’ t numerical relativity be relativity? Most recent successful stories in BH simulations

Do we have any choice? Reported experiences: –No long term simulations with normal coordinates (zero shift). –Generalised harmonic slicing but strictly harmonic shift. –BSSN normal coordinates (zero shift) and 1+log slicing crashes at 30-40M ( gr-qc/ ). –Gaugewave test: gauge imposed is harmonic, so harmonic code succeeds, but BSSN crashes.

Looking for a gauge polyvalent code Z4 formalism MoL with 3rd order SSP Runge-Kutta. Powerful 3rd order FD algorithm (submitted to JCP). See a variant in (ERE 2007) Scalar field stuffing. Cactus. Single grid calculation. Logarithmic grid for long runs.

Gaugewave Test Minkowski spacetime: Harmonic coordinates x,y,z,t.

t=1000; Amplitude 0.1

BSSN Comparison t=1000 t=30

t=1000; Amplitude 0.5

Single BH Test Singularity avoidant conditions (Bona-Mass ó ) Q = f (trK-2  ) 1+log (f=2/  ) slicing with normal coordinates (zero shift) up to 1000M and more! Never done before (BSSN reported to crash at M without shift). Unigrid simulation. Logcoords =1.5.

Lapse function at t=1000M

R/M=20 r/M=463000

More gauges (zero shift) Isotropic coords. Boundaries at 20M. Logcoords f=1/  150M. Slicing (f) 2/  1+1/  1/2+1/  1/  1/4+3/4  1/2+1/2  Vol. Elem. left 37%25%20%14%10%6% Time lasting (0.2 / 0.1 resol) 50M / 50M / 50M / 50M 6M / 50M 6M / 20M 5M / 12M

Shift 1st order conditions. Vectorial. –Harmonic?  x i = 0. 1st order version

Advection terms Lie derivative “ advection/damping ” Covariant advection term

1st order vector ingredients Time-independent coordinate transformations.