Sentinel-5 precursor: TROPOMI Cloud slicing retrieval: Program development and testing with SCIAMACHY/GOME-2 WFDOAS data Kai-Uwe Eichmann, Mark Weber,

Slides:



Advertisements
Similar presentations
SCILOV-10 Validation of SCIAMACHY nadir operational NO 2 product F. Azam, A. Richter, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati, Italy.
Advertisements

Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
SCILOV-10 Validation of SCIAMACHY limb operational NO 2 product F. Azam, K. Weigel, Ralf Bauer, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN,
SCILOV-10 Validation of SCIAMACHY limb operational BrO product F. Azam, K. Weigel, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati,
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
The inter-comparison of SCIAMACHY and radar cloud top heights Alexander A. Kokhanovsky(1), C. Naud(2), A. Devasthale(3) (1)Institute of Remote Sensing,
Tangent height offsets estimated by correlation analysis of ground-based data with O 3 limb profiles J.A.E. van Gijsel Y.J. Meijer.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
Integrating satellite observations for assessing air quality over North America with GEOS-Chem Mark Parrington, Dylan Jones University of Toronto
Comparisons of TES v002 Nadir Ozone with GEOS-Chem by Ray Nassar & Jennifer Logan Thanks to: Lin Zhang, Inna Megretskaia, Bob Yantosca, Phillipe LeSager,
Predictability study using the Environment Canada Chemical Data Assimilation System Jean de Grandpré Yves J. Rochon Richard Ménard Air Quality Research.
Observed and modelled long-term water cloud statistics for the Murg Valley Kerstin Ebell, Susanne Crewell, Ulrich Löhnert Institute for Geophysics and.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
Xiong Liu, Mike Newchurch Department of Atmospheric Science University of Alabama in Huntsville, Huntsville, Alabama, USA
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Monitoring of near-real-time SCIAMACHY, MIPAS, and.
Tropospheric NO2 and ozone Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Jos de Laat, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Thessaloniki,
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Validation of ENVISAT trace gas data products by comparison.
 Expectations 2004  Achievements  Summary + Outlook AT-2 Task Group 1 Progress Thomas Wagner.
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
AMFIC on AIRSAT- a web data base for hosting and easy retrieval of atmospheric data from satellites Konstantinos Kourtidis 1, Aristeidis Georgoulias 1,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
S5P tropospheric ozone product: Convective Cloud Differential method First German S5P Verification Meeting Bremen, November 2013 Pieter Valks DLR,
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
AMFIC second progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
Aristeidis K. Georgoulias Konstantinos Kourtidis Konstantinos Konstantinidis AMFIC Web Data Base AMFIC Annual Meeting - Beijing October 2008 Democritus.
WP 3 Satellite observations. SCIAMACHY retrieval Month 15: Initial error report Month 18: First dataset for CH4 and CO Incorporation of ECMWF p/T profiles.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Sciamachy features and usage with respect to end-users The typical fate of retrieval people dealing with large datasets… C. Frankenberg, SRON team, IUP.
MMS - Ozonesonde Wind and Temperature Comparison during CR-AVE T.P. Bui, J. Dean-Day, C. Chang, R. Castaneda NASA-Ames Research Center H. Voemel University.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Retrieval of Methane Distributions from IASI
Validation of SCIAMACHY total ozone: ESA/DLR V5(W) and IUP WFDOAS V2(W) M. Weber, S. Dikty, J. P.Burrows, M. Coldewey-Egbers (1), V. E. Fioletov (2), S.
NASA/GSFC Tropospheric Ozone Residual M. Schoeberl NASA/GSFC M. Schoeberl NASA/GSFC.
OZONE PRODUCTS S5P Verification Workshop 20/05/2015 MPIC, Mainz.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Tropospheric Ozone Residual from OMI and MLS J. R. Ziemke, S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Levelt, and J. Waters (J. Geophys.
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
TAS-I/ESA Progress Meeting – 11 th July 2012 Design of a new global dust storm scenario for GCM simulations L. Montabone, E. Millour, F. Forget.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
SADDU1/13 SCIAVALIG status report: Product website & Quality assessment status Annelise du Piesanie, Ankie Piters.
Flight Tests of the Novel TechSat Satellite Ozone Meter Algorithms and Measurement Processing Results M. Guelman, F. Ortenberg, B. Wolfson Asher Space.
OMI Nitrogen Dioxide Workshop Ellen Brinksma, Folkert Boersma.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
Status of ACVE-3/pre-validation recommendationss 21. 6
Definition of SCIAMACHY Diagnostic Data Set
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Johan de Haan Pepijn Veefkind
Evaluation of the MERRA-2 Assimilated Ozone Product
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Authors: B.Kerridge, R.Siddans, J.Reburn, B.Latter and V.Jay
MIPAS-2D water database and its validation
HARGLO-2 Wind Intercomparisons
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Sentinel-5 precursor: TROPOMI Cloud slicing retrieval: Program development and testing with SCIAMACHY/GOME-2 WFDOAS data Kai-Uwe Eichmann, Mark Weber, IUP Bremen

Background TOZ: Total ozone / GVC: Ghost vertical column / CF: Cloud fraction

Input/output data Level 2 data –Total ozone TOZ [DU] (WFDOAS) –Ghost vertical column GVC [DU] (WFDOAS) –Cloud top height CTH [km] (SACURA or FRESCO) –Cloud fraction CF [-] (SACURA or FRESCO) Auxiliary data –Latitude/Longitude [deg] (Instrument) Derived data –Cloud top pressure CTP [hPa] Output data –Cloud slicing Ozone VMR (CSV) [ppmv] between CTH(min) and CTH(max)

CSL program development IDL program (M. Weber) using an iterative approach to deal with outliers in the data Speed increase with packing all WFDOAS data into one file per month, restricted to the tropics (25 deg): SCIAMACHY factor 12 (6 Min ->30 sec, GOME-2 factor 20: 20 to 1 min). FORTRAN 90 draft version is ready (linear least square only), unpacked data version takes about 3 Min. IDL version used for testing different parameters: –Cloud fraction = [0.8,0.9] –CTH(min) = [6, 7] km (5.5 km GOME-2) –Grid boxes: 5° Lat / [30°, 10°] Lon –Number of data per grid box: [15, 50] –Number of days: [6, 15, 30]

SCIAMACHY cloud top heights Gridcell

Results from SCIAMACHY WFDOAS CTH(min)=7km 2006/10: 30d of data CF(min)=90% Outliers vmr=slope*1.27E3

Two regimes of ozone Negative VMR due to change of ACCO during the month Thus monthly means are not the best choice Problem: ACCO time-dependent

Dividing into 6 days periods

GOME-2 results GOME-2 has about 4 times more measurements than SCIAMACHY. CTH is generally lower (FRESCO) than for SCIAMACHY (SACURA). Differences are about 3 km on average. This will have an effect on the calculated VMR (cloud slicing volume mixing ratio).

Comparison SCIA / GOME-2

Results Reducing the cloud fraction to 0.8: –increases the number of cloudy pixels by up to 40% depending on altitude. –The effect needs to be further analyzed. The height to pressure conversion is error prone, as the temperature profile is not taken into account. –The differences between pressures calculated with a scale height of 8 km or using the international barometric height formula are, depending on the altitude, quite different (up to 40 hPa at 15km = 40%). Using data from a whole month for the CSL calculation is in a lot of cases not the best choice, as the above cloud ozone may change considerably during the month.

Outlook Extent the parameter study, – e.g. SACURA vs. FRESCO Use sonde data to decide which parameters are best for the retrieval (see E. Leventidou) Precalculated data input to FORTRAN program Test the code with OMI data –different input parameter, definition of ACCO