CHAPTER 2: BONDING AND PROPERTIES What promotes bonding? What types of bonds are there? How does bonding affect material properties? Much of a material’s.

Slides:



Advertisements
Similar presentations
1 Chapter 2 Atomic Structure & Bonding in Solids.
Advertisements

Section #2 Downloadable at:
ATOMIC BONDING Atomic Bonding Primary Bonds IonicCovalentMetallic Secondary Bonds van der Waals.
: Atomic Systems and Bonding :
Chapter CHAPTER 2: Atomic Structure and Bonding in Solids.
: Atomic Systems and Bonding : R. R. Lindeke, Ph.D. Engr 2110 – Lecture 2.
Chapter Chapter 2: Atomic Structure and Interatomic Bonding (updated) These notes have been prepared by Jorge Seminario from the textbook material.
The Chemical Context of Life chapter 2. 2 Energy & Matter Universe is composed of 2 things …… Universe is composed of 2 things …… Energy Energy  Ability.
Chapter 2: Atomic Structure & Interatomic Bonding
Periodic Patterns.
1 1 Chapter Outline  2.1 The Structure of Materials: Technological Relevance  2.2 The Structure of the Atom  2.3 The Electronic Structure of the Atom.
Chapter 2: Atomic bonding
to the world of Chemical Bonding is the joining of atoms to form molecules and compounds Atoms bond to achieve a state of stability (stable outer shell.
Chapter ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2: Atomic Structure.
2-1 Atomic Structure and Bonding. Structure of Atoms 2-2 ATOM Basic Unit of an Element Diameter : 10 –10 m. Neutrally Charged Nucleus Diameter : 10 –14.
Basic Atomic Structure
Chapter ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are dependent on bonding? CHAPTER 2: A tomic structure.
Atomic structure & bonding
Lecture 3 (9/13/2006) Crystal Chemistry Part 2: Bonding and Ionic Radii.
Properties Structure Processing Electronic level (subatomic) Atomic (molecular level, chemical composition) Crystal (arrangement of atoms or ions wrt.
Chapter ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2: Atomic Structure.
Chapter 2: Atomic Structure & Interatomic Bonding
CHAPTER 2: Atomic Structure and Interatomic Bonding 10/28/2015 9:56 AM Dr. Mohammad Abuhaiba1.
Chapter ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2: Atomic Structure.
L e a r n i n g O b j e c t i v e s: After careful study of this lecture you should be able to do the following: 1.Name the two atomic models cited, and.
ELECTRON AND PHONON TRANSPORT The Hall Effect General Classification of Solids Crystal Structures Electron band Structures Phonon Dispersion and Scattering.
Chapter 2: Atomic Structure and Interatomic Bonding
Chemicals common in biology Carbon, Oxygen, Hydrogen and Nitrogen most abundant Phosphorus, Calcium, Sodium, Magnesium, Potassium and Sulfur are also common.
CHAPTER 2: BONDING AND PROPERTIES
NCSU [110] [001] [110] Si GaAs 2 nm. NCSU The World of Atoms Instructor: Dr. Gerd Duscher www4.ncsu.edu/~gjdusche www4.ncsu.edu/~gjdusche.
King Abdulaziz University Chemical and Materials Engineering Department Chapter 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING Session I.
Matter- anything that has mass and occupies space Atom- basic unit of matter Subatomic particles: Protons (+) –in nucleus, 1 amu Neutrons (0) –in nucleus,
CHAPTER 2: Atomic Structure and Interatomic Bonding
: Atomic Systems and Bonding : R. R. Lindeke, Ph.D. ME 2105– Lecture Series 2.
Class 2 How Atoms combine with similar and dissimilar atoms
King Abdulaziz University Chemical and Materials Engineering Department Chapter 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING Session II.
Today's Agenda ISSUES TO ADDRESS... • What promotes bonding?
Introduction to Chemistry Chapter 5 Section 5.1 Courtesy of Mrs. Wyckoff Click Here to Play the Element Song!
Chapter ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2: Atomic Structure.
ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? CHAPTER 2: Atomic Structure and Interatomic.
Chapter 2- ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? 1 CHAPTER 2: BONDING AND.
Nucleus: Z = # protons = 1 for hydrogen to 94 for plutonium N = # neutrons Atomic mass A ≈ Z + N BOHR ATOM CHAPTER 2: ATOMIC STRUCTURE AND INTERATOMIC.
ME 330 Engineering Materials Lecture 4 Atomic Structure and Interatomic Bonding Chemistry review Interatomic bonding in solids Crystalline vs. Amorphous.
Solid State Electronics EC 210 – EC 211 Prof.Dr. Iman Gamal Eldin Morsi 1.
6-1: Ionic Bonding 6-2: Covalent Bonding 6-3: Naming Formulas and Writing Compounds.
: Atomic Systems and Bonding : R. R. Lindeke, Ph.D. Engr 2110 – Lecture 2.
INTERATOMIC BONDS.
CHAPTER 2 Structure of Solid
Chapter 2: Atomic Structure & Interatomic Bonding
James Bond Theme Tune - YouTube
Chapter 2: Atomic Structure & Interatomic Bonding
CHAPTER 2: Atomic structure and interatomic bonding
Chapter 2: Atomic Structure & Interatomic Bonding
Atomic Structure and Bonding
Chapter 2: Atomic Structure & Interatomic Bonding
Atom, PTE, Trends, Bohr Model Review
M.Mubeen MME M.Muneeb MME Zeeshan Rasool MME
Bonding Chapters 7-8.
Introduction to Materials Science and Engineering
Ch2 Continued… Examples: Ionic Bonding
Chapter 7 & 8 Chemical Bonding
CHAPTER 2: BONDING AND PROPERTIES
CHAPTER 2: BONDING AND PROPERTIES
Chemical Bonds.
CHAPTER 2: BONDING AND PROPERTIES
CHAPTER 2: BONDING AND PROPERTIES
Chapter 2: Atomic Structure & Interatomic Bonding
PDT 153 Materials Structure And Properties
Introduction to Dentistry and Biomaterials
Chapter 2: Atomic Structure & Interatomic Bonding
Presentation transcript:

CHAPTER 2: BONDING AND PROPERTIES What promotes bonding? What types of bonds are there? How does bonding affect material properties? Much of a material’s behavior can be explained by the phenomena in this chapter. 1

Order: Short vs Long Range 2

3 Atomic Structure atom – electrons – 9.11 x kg protons neutrons atomic number = # of protons in nucleus of atom = # of electrons of neutral species A [=] atomic mass unit = amu = 1/12 mass of 12 C Atomic wt = wt of x molecules or atoms 1 amu/atom = 1g/mol C H } 1.67 x kg

4 Atomic Structure Valence electrons determine the following properties: 1)Chemical 2)Electrical 3)Thermal 4)Optical

5 Electronic Structure Electrons have wavelike and particulate properties. –This means that electrons are in orbitals defined by a probability. –Each orbital at discrete energy levels is determined by quantum numbers. Quantum # Designation n = principal (energy level-shell)K, L, M, N, O (1, 2, 3, etc.) l = subsidiary (orbitals)s, p, d, f (0, 1, 2, 3,…, n -1) m l = magnetic1, 3, 5, 7 (- l to + l ) m s = spin½, -½

7 Electron Energy States 1s1s 2s2s 2p2p K-shell n = 1 L-shell n = 2 3s3s 3p3p M-shell n = 3 3d3d 4s4s 4p4p 4d4d Energy N-shell n = 4 have discrete energy states tend to occupy lowest available energy state. Electrons...

9 Why? Valence (outer) shell usually not filled completely. Most elements: Electron configuration not stable. SURVEY OF ELEMENTS Electron configuration (stable)... 1s1s 2 2s2s 2 2p2p 6 3s3s 2 3p3p 6 (stable)... 1s1s 2 2s2s 2 2p2p 6 3s3s 2 3p3p 6 3d3d 10 4s4s 2 4p4p 6 (stable) Atomic # Element 1s1s 1 1Hydrogen 1s1s 2 2Helium 1s1s 2 2s2s 1 3Lithium 1s1s 2 2s2s 2 4Beryllium 1s1s 2 2s2s 2 2p2p 1 5Boron 1s1s 2 2s2s 2 2p2p 2 6Carbon... 1s1s 2 2s2s 2 2p2p 6 (stable) 10Neon 1s1s 2 2s2s 2 2p2p 6 3s3s 1 11Sodium 1s1s 2 2s2s 2 2p2p 6 3s3s 2 12Magnesium 1s1s 2 2s2s 2 2p2p 6 3s3s 2 3p3p 1 13Aluminum... Argon... Krypton Adapted from Table 2.2, Callister & Rethwisch 3e.

10 Electron Configurations Valence electrons – those in unfilled shells Filled shells more stable Valence electrons are most available for bonding and tend to control the chemical properties –example: C (atomic number = 6) 1s 2 2s 2 2p 2 valence electrons

11 The Periodic Table Columns: Similar Valence Structure Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions. give up 1e - give up 2e - give up 3e - inert gases accept 1e - accept 2e - O Se Te PoAt I Br He Ne Ar Kr Xe Rn F ClS LiBe H NaMg BaCs RaFr CaKSc SrRbY

12 Electronic Configurations ex: Fe - atomic # = 26 valence electrons 1s1s 2s2s 2p2p K-shell n = 1 L-shell n = 2 3s3s 3p3p M-shell n = 3 3d3d 4s4s 4p4p 4d4d Energy N-shell n = 4 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

14 Ranges from 0.7 to 4.0, Smaller electronegativityLarger electronegativity Large values: tendency to acquire electrons. Adapted from Fig. 2.7, Callister & Rethwisch 3e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. Electronegativity

15 Bonding Energy Energy – minimum energy most stable –Energy balance of attractive and repulsive terms Attractive energy E A Net energy E N Repulsive energy E R Interatomic separation r r A n r B E N = E A + E R = 

16 Bond length, r Bond energy, E o Melting Temperature, T m T m is larger if E o is larger. Properties From Bonding: T m r o r Energy r larger T m smaller T m EoEo = “bond energy” Energy r o r unstretched length

17 Coefficient of thermal expansion,   ~ symmetric at r o  is larger if E o is smaller. Properties From Bonding :  =  (T 2 -T 1 )  L L o coeff. thermal expansion  L length,L o unheated, T 1 heated, T 2 r o r larger  smaller  Energy unstretched length EoEo EoEo

Primary Bonding Ionic Covalent Metallic 18 Bonding involves the valence electrons. Bonding occurs due to the tendency of the atoms to assume stable electron structures (completely filled outer shells)

19 Occurs between + and - ions. Requires electron transfer. Large difference in electronegativity required. Example: NaCl Ionic Bonding Na (metal) unstable Cl (nonmetal) unstable electron + - Coulombic Attraction Na (cation) stable Cl (anion) stable

21 Ionic bond – metal + nonmetal donates accepts electrons electrons Dissimilar electronegativities ex: MgOMg 1s 2 2s 2 2p 6 3s 2 O 1s 2 2s 2 2p 4 [Ne] 3s 2 Mg 2+ 1s 2 2s 2 2p 6 O 2- 1s 2 2s 2 2p 6 [Ne] [Ne]

22 Predominant bonding in Ceramics Adapted from Fig. 2.7, Callister & Rethwisch 3e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. Examples: Ionic Bonding Give up electronsAcquire electrons NaCl MgO CaF 2 CsCl

23 C: has 4 valence e -, needs 4 more H: has 1 valence e -, needs 1 more Electronegativities are comparable. Covalent Bonding similar electronegativity  share electrons bonds determined by valence – s & p orbitals dominate bonding Example: polymers, GaAs, InSb, SiC, CH 4 shared electrons from carbon atom shared electrons from hydrogen atoms H H H H C CH 4

24 Ionic-Covalent Mixed Bonding % ionic character = where X A & X B are Pauling electronegativities Ex: MgOX Mg = 1.3 X O = 3.5 %)100( x

Metallic Bonding Metallic bonds have up to 3 valence electrons that are not bound to a specific atom. They drift throughout the metal forming a “sea of electrons” or “electron cloud”. The nonvalence electrons and nuclei for the “ion cores”. The free electrons act as a “glue” to hold the ion cores together. These are good conductors of heat and charge (electricity).

Secondary Bonding (van der Waals) Interaction between dipoles; dipoles are a separation of charge (+/-). Weaker forces (10kJ/mol) than primary bonding, yet these bonds still influence physical properties. Secondary bonding exists in virtually all atoms and molecules, but their presence may be obscured by primary bonding. 26

27 Permanent dipoles-molecule induced Fluctuating dipoles -general case: -ex: liquid HCl -ex: polymer SECONDARY BONDING asymmetric electron clouds +-+- secondary bonding HHHH H 2 H 2 secondary bonding ex: liquid H 2 H Cl H secondary bonding secondary bonding +-+- secondary bonding

Bonding energies between 600 and 1500 kJ/mol (or 3 to 8 eV/atom) are considered to be relatively large and will have correspondingly high (large) melting points.

30 Type Ionic Coulombic force Covalent Metallic Secondary Van der Waals Bond Energy Large Variable large-Diamond small-Bismuth Variable large-Tungsten small-Mercury smallest Comments Nondirectional (ceramics) Directional (semiconductors, ceramics polymer chains) Nondirectional (metals) Directional inter-chain (polymer) inter-molecular Summary: Bonding

31 Ceramics (Ionic & covalent bonding): Large bond energy large T m large E small  Metals (Metallic bonding): Variable bond energy moderate T m moderate E moderate  Summary: Primary Bonds Polymers (Covalent & Secondary): Directional Properties Secondary bonding dominates small T m small E large  secondary bonding