BINP experience in magnet production Sample. Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ±

Slides:



Advertisements
Similar presentations
Abstract Calculations of Harmonics of Quadrupole Magnets Rybitskaya Tatyana, Budker Institute of Nuclear Physics, Russia Design of pole profile and chamfers.
Advertisements

Magnets for the ESRF upgrade phase II
Dipole Magnets for NESR and RESR Gebhard Moritz GSI Darmstadt November 2004.
Tagger and Vacuum Chamber Design. Outline. Design considerations. Stresses and deformations. Mechanical assembly.
Magnet rotated by 5.9 degree Distance from entrance point to magnet right bottom corner m.
Magnet designs for the ESRF-SR2
Zachary Wolf Undulator Oct 12, LCLS Undulator Tuning Zack Wolf, Yurii Levashov, Achim Weidemann, Seva Kaplounenko,
Coil Manufacture, Assembly and Magnetic Calibration Facility for Warm and Cold Magnetic Measurements of LHC Superconducting Magnets CERN AT-MTM 1 / 21.
April 12, 2006 J. Garcia Workshop on Test Facilities and measurement equipment needed for the LHC exploitation Resistive magnet measurements & coils, manufacture.
ILC Main Linac Superconducting Cryogen Free Splittable Quadrupole Progress Report V. Kashikhin for Superconducting Magnet Team.
April 24, 2008 FNAL ILC SCRF Meeting 1 Main Linac Superconducting Quadrupole V. Kashikhin, T. Fernando, J. DiMarco, G. Velev.
1 Warm Magnets Work Package Status J. Bauche, TE-MSC Technical Meeting, 9th January 2014.
BROOKHAVEN SCIENCE ASSOCIATES Abstract Magnet Design Workshop: Magnet Design and Analysis Charles Spataro, NSLS-II Project NSLS-II is a new 3Gev synchrotron.
Rotating Coils - Giordana Severino – Rotating Coils PACMAN meeting Printed Circuit Coils – Future developments.
WP2 ESR 2.2 WP2 ESR2.2 Giordana Severino PACMAN WORKSHOP - CERN PCB technology for small diameter field sensing.
1 / 17 Author CERN – Geneva – CH 14th International Magnetic Measurement Workshop September 2005, Geneva, Switzerland Title.
Magnet designs for Super-FRS and CR
___________________ Jürgen Schreiber, ECFA/DESY LC workshop, Amsterdam, April 1-4, 2003 BEAM ENERGY SPECTROMETER DESY – Dubna – TU Berlin Machine physicists,
Task7: NUSTAR2 - Design and Prototype Construction of a Radiation-Resistant Magnet C. Mühle GSI Task leader: G. Moritz /GSI.
Daniel Schoerling TE-MSC-MNC 1 Magnets Daniel Schoerling on behalf of WP 2.2 and WP 2.16 ELENA Project Review 14 th – 15 th October IT.
Scientific support Scientific laboratories have the qualified specialists in fields of accelerator physics and technique. They calculate and model the.
F James T Volk June Permanent Magnets for Linear Colliders James T Volk Fermilab.
ATF2 Magnets ATF2 Magnets 27/28 Feb 2007Cherrill Spencer, SLAC. Info for QC3 machining discussion 1 Information for discussion about how to enlarge the.
GlueX Collaboration Meeting. Jefferson Lab. September 9 – 11, Review of Tagger System.
ATF2 Magnets Results of the Field Measurements of three ATF2 DEA Dipoles by Single Stretched Wire and Hall Probe at IHEP over past 2 months: updated report.
SR NSLS prototype magnets. Dipoles 90 mm aperture dipole Pole Ends will be matched to achieve the magnetic field quality ( )
Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014.
Bending Magnets for the Metrology Light Source
XFEL X-Ray Free-Electron Laser Bernward Krause MEA WP-12: Warm Magnets WPL: B. Krause.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.
Magnets Attilio Milanese Doing Business with CERN
Booster bpm’s Jim Crisp 3/29/06. Plate width and linearity with the response linearized along the axis 60 and 20 degree plates become nonlinear in the.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
Superferric quadrupoles and multipoles at the NSCL Al Zeller NSCL/MSU.
Bent combined function bending magnets and optics: the case of SESAME Attilio Milanese 3 Dec
1 Magnetic measurements of the Super-FRS magnets 1 Overview: - Measurement systems for dipoles - requirements - Measurement systems review - Open points.
CERN –GSI/CEA MM preparation meeting, Magnetic Measurements WP.
GSI Helmholtzzentrum für Schwerionenforschung GmbH The Optimized Superconducting Dipole of SIS100 for Series Production ICEC26 March 9th, 2016 GSI Helmholtzzentrum.
DDBA magnets Chris Bailey Low emittance rings Sept Frascati.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
Superconducting Cryogen Free Splittable Quadrupole for Linear Accelerators Progress Report V. Kashikhin for the FNAL Superconducting Magnet Team (presented.
beam delivery with SC magnets
Tagger and Vacuum Chamber Design Jim Kellie Glasgow University.
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
HTS and LTS Magnet Design and Prototyping for RAON
Magnetic Measurements At SLAC
Tutorial On Fiducialization Of Accelerator Magnets And Undulators
Iranian Light Source Facility, IPM, P.O. Box , Tehran, Iran
Cherrill Spencer, SLAC Member of ATF2 Magnet Team
Generalised Halbach Magnets for a Non-Scaling FFAG Arc
Normal Conducting Magnets
6th BINP-FAIR-GSI Workshop,
Cherrill Spencer, SLAC Member of ATF2 Magnet Team
Preliminary Design of High Precision Small Aperture Magnets for BAPS
EFREMOV INSTITUTE SAINT PETERSBURG RUSSIA
Halbach Magnets: Design, Prototypes & Results
Magnetic Measurements For The LCLS Undulator System
CHEN, Fusan KANG, Wen November 5, 2017
Magnets for the ESRF upgrade phase II
Main magnets for PERLE Test Facility
LCLS Undulator Fiducialization
Magnet developments for the ESRF-EBS
Compact and Low Consumption Magnet Design The DESY Experience
III. Correction Dipoles MDG Accessories for all Magnets V. Summary
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Presentation transcript:

BINP experience in magnet production Sample

Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ± 0.02 Field range, Tup to 1.5 Good field area, mm 2 60 x 36 Homogeneity dB/B  2.5x10 -4

E e, MeV B, Т ∆B/B± (60 x 36 mm 2 ) I, А I. w, A. t Example of MLS Dipole modeling A (EBG, Germany) B=1.3 TB=0.21 T 1.44 T 1.31 T 0.21 T 200 mm х y 1 2 3

Accuracy of lamination profile d-30  m d+30  m h=100  m w=300  m + 15  m -15  m +15  m 1  В 

Model«lam_model»«solid_model» Lenght 1108 mm К уп zz xx L eff, mm Chamfer 13 mm х 45  3D modeling of magnetic fields  B 0 =1.305 T ;  L eff /L eff =  L eff /L eff = Т “lam” 1.3 Т “solid”

B=1.305 T B=0.213 T Model «lam»«solid» К I, A B, T L eff, m h (1/m) k (1/m 2 ) m (1/m 3 ) n (1/m 4 ) D modeling of magnetic fields

1 – central yoke 2 – glued end yoke 3 – box of steel plates 4 - geosigns 5 – coil supports MLS Dipole yoke design Stabolit 20 Stabolit A

MLS Dipole yoke manufacture 5330 kg

Mechanical parameters of yoke ParameterTS   Length, mm 1108  ± 0.43 Distance, mm 1082  ± 0.11 gapTech Spec   h 1, mm ± ± h 2, mm ± ± h 3, mm ± ± Yoke deflection, mm< 0.3 Non-parallelism A и B, mm< 0.5 Non-plateness С на 100 mm, mm< 0.03 Non-plateness D на 100 mm, mm< 0.03 Non-parallelism N and F, mm< 0.05

Coil production CoilsMainCorrection (1%) Iw, kA.t I, А6315 wire 21 x 12/  5 мм  1.5 мм R main 20 mOhm R cor 2.9 ohm PP 6 atm F16 l/min

Geo-sign alignment

MLS Dipole 8 3 ноги 370  0.2 мм

Hall probe measurement Current 100 mA Magnetic sensivity ~ 124  V/mT U lim < 30  V TC MC+ U lim  2.7 ppm/°С X H12 =130  mm ∆X=10  mm  Y=  0.04 mm Z=3  0.15 mm 1 – Hall probes 2 – temperature sensor 3 – NMR probe (10 -6 )

Hall probe measurement Magnetic field map – 2 runs

Magnetic measurement results of SD-1 current, Аh (1/м)k (1/м 2 )m (1/м 3 ) 103,650, ,0194-0, , ,0139-0, , ,0218-0, , ,0272-1,003 I= A ∆L eff /L eff = B=1.3 T B=0.21 T I=622.71A L eff = mm

Magnetic measurement results «lam»«solid»  I, А ± 0.5 B c, T ± L eff, mm ± 0.7 h, 1/m k, 1/m ± m, 1/m ± n, 1/m ± 1.4 ∆L eff /L eff = B=1.3 T SRD 01

Multipoles coils Quadrupole

Multipoles coils Sextupole Octupole

Coil production Radiation resistance quadrupole (SLAC impregnation procedure coils)

Pole profile and magnetic field (quadrupole) № idealshiftrotation shift + rotation step B’ n /B’ 2, Т  B/B ¼ profile ½ length

Multipole modeling 1 – А 2 – Сталь 10 ½ профиля ½ длины ¼ профиля А ¼ профиля ½ длины sextupole octupole

TS  S1, mm   S2, mm  S3, mm  S4, mm  d1, mm   d2, mm  —  15  m —  25  m Design of MLS quadrupole TS  h, mm 400   0.01 g, mm  m, mm   0.01 L, mm   0.18 L Ф, mm   0.02

TS  S1, mm   S2, mm  S3, mm  S4, mm  S5, mm  S6, mm  d1, mm   0.02 d2, mm  d3, mm  Design of MLS sextupole TS  h, mm 400   0.02 g, mm  0.01 m, mm   0.01 L, mm   0.2 L ch, mm   0.01 —  15  m —  25  m —  50  m

TS  h, mm 400   0.01 g, mm  m, mm   L, mm 80.0   0.14 Octupole magnet —  25  m —  50  m TS  S1, mm   S2, mm  S3, mm  S4, mm  S5, mm  S6, mm  0.00 S7, mm  0.00 S8, mm  d1, mm 86   d2, mm  0.0 d3, mm  d4, mm  0.0

Accuracy of lamination and yoke profile № 2D id 2D rotation 3D idmeas B’ n /B’ 2 A’ n /B’ 2 B’ n /B’ ∆B/B2∆B/B  m -15  m Profile measurements «rotation» ~12  m 2D model «ideal» «rotation» 30  m «rotation» 12  m ∆B rot /∆B ideal ~ 2.5 3D model «ideal» D «rotation» 12  m ∆B/B 2 ~ 2.5* ~ ~ D model