LOW COMPLEXITY EMBEDDED QUANTIZATION SCHEME COMPATIBLE WITH BITPLANE IMAGE CODING Department of Information and Communications Engineering Universitat Autònoma de Barcelona, Spain Francesc Aulí-Llinàs
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW TABLE OF CONTENTS
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW TABLE OF CONTENTS
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION Progressive transmission Interactive applications Codestream truncation Image transcoding compressed codestream QUALITY PROGRESSIVITY 1
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION CLASSIC SCHEME: USDQ+BPC 0 W =
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION CLASSIC SCHEME: USDQ+BPC 0 W = (10 XXXX (2 1XXX (2 10XX (2 101X ( ( emit 0 emit = 10 (10 2
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION CLASSIC SCHEME: USDQ+BPC 0 W = (10 XXXX (2 1XXX (2 10XX (2 101X ( ( = 10 (10 2
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION CLASSIC SCHEME: USDQ+BPC 0 W = (10 XXXX (2 1XXX (2 10XX (2 101X ( ( density IS USDQ+BPC OPTIMAL FOR WAVELET-BASED LOSSY IMAGE CODING? = 10 (10 2
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION GENERAL EMBEDDED QUANTIZATION (GEQ) 0 W = 2 4 emit 0 emit emit 0 emit > T 1 ? yes no 0 > T 4 ’’’ ? yes no 10 ( > T 6 ’’’’’’ ? yes no T 6 ’’’’’’’T 6 ’’’’’’T 6 ’’’’’ T 6 ’’’’ T 6 ’’’ T6’’T6’’T6’T6’ T5T5 T4’T4’ T 4 ’’ T 4 ’’’ T3T3 T2T2 T1T1 3
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS INTRODUCTION GENERAL EMBEDDED QUANTIZATION (GEQ) 10 ( ≠ 10 (10 USDQ+BPC is optimal in terms of coding performance GEQ schemes can achieve same coding performance as that of USDQ+BPC employing fewer quantization stages GEQ schemes can help to reduce the computational costs of the codec in 20% GEQ is not compatible with bitplane coding strategies 1 > T 1 ? yes no 0 > T 4 ’’’ ? yes no 0 > T 6 ’’’’’’ ? yes no 0 W = 2 4 T 6 ’’’’’’’T 6 ’’’’’’T 6 ’’’’’ T 6 ’’’’ T 6 ’’’ T6’’T6’’T6’T6’ T5T5 T4’T4’ T 4 ’’ T 4 ’’’ T3T3 T2T2 T1T1 RESEARCH PURPOSE: ADAPT THE LOW-COMPLEXITY GEQ SCHEME TO BITPLANE CODING 3
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW TABLE OF CONTENTS 1
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS GEQ 2SDQ L H same number of subintervals USDQ+BPC 0 W αWαW 1) H = L (1 - α) α 2) 3) Each quantization stage halves the previous subintervals except in the first stage CONDITIONS PROPOSED SCHEME 2-STEP SCALAR DEADZONE QUANTIZATION 4
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS 0 W = 2 4 emit 0 emit αWαW PROPOSED SCHEME L H XXXX 1XXX 11XX 110X (10 2SDQ(1010 (2 )= STEP SCALAR DEADZONE QUANTIZATION 5
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION 6
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION 7
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 0 2M2M α2Mα2M 2 M-1 2-STEP SCALAR DEADZONE QUANTIZATION 7
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 0 2M2M 2 M-1 α2Mα2M L H 2SDQ header bit 2-STEP SCALAR DEADZONE QUANTIZATION 7
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 0 2M2M 2 M-1 α2Mα2M L H variable β H = 4(2αln2 – α + 1 – ln2) RD-opt 2-STEP SCALAR DEADZONE QUANTIZATION 2SDQ header bit constant β L = 4α 2 M-1 2 M-2 0 7
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION RD-opt 2SDQ header bit 8
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS IMPLEMENTATION IN JPEG2000 ORIGINAL IMAGE MULTI-COMPONENT TRANSFORM WAVELET TRANSFORM QUANTIZATION TIER-1 CODING TIER-2 CODING JP2 CODESTREAM 2-STEP SCALAR DEADZONE QUANTIZATION RD-opt 2SDQ header bit 8
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW TABLE OF CONTENTS 1
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Portrait” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 9
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS EXPERIMENTAL RESULTS “Cafeteria” image (ISO corpus) Codeblocks of 64x64 2SDQ is applied on codeblocks with 6 bitplanes or more removing 1 bitplane 10
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW TABLE OF CONTENTS 1
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS L H αWαW explore new quantization schemes for wavelet-based image coding compatible with bitplane coding quantization scheme with 2 step sizes adapted to the density of wavelet coefficients replacement of USDQ quantization indices by 2SDQ indices introduction of three easy-to-implement steps in the coding pipeline reduction of coding passes without penalizing coding performance Motivation 2SDQ Implementation Adaptation in JPEG2000 Results 11
INTRODUCTION/ 11 QUANTIZATION SCHEMEEXPERIMENTAL RESULTS CONCLUSIONS 11 CONCLUSIONS L H αWαW explore new quantization schemes for wavelet-based image coding compatible with bitplane coding quantization scheme with 2 step sizes adapted to the density of wavelet coefficients replacement of USDQ quantization indices by 2SDQ indices introduction of three easy-to-implement steps in the coding pipeline reduction of coding passes without penalizing coding performance Motivation 2SDQ Implementation Adaptation in JPEG2000 Results