LDOPE QA Tools Sadashiva Devadiga (SSAI) MODIS LDOPE January 18, 2007.

Slides:



Advertisements
Similar presentations
C6 Land Water Mask Sadashiva Devadiga, Pete Ma and Mark Carroll.
Advertisements

GLC 2000 ‘Final Results’ Workshop (JRC-Ispra, 24 ~ 26 March, 2003) GLC 2000 ‘Final Results’ Workshop (JRC-Ispra, 24 ~ 26 March, 2003) LAND COVER MAP OF.
Scaling Biomass Measurements for Examining MODIS Derived Vegetation Products Matthew C. Reeves and Maosheng Zhao Numerical Terradynamic Simulation Group.
Daytime Cloud Shadow Detection With MODIS Denis Grljusic Philipps University Marburg, Germany Kathy Strabala, Liam Gumley CIMSS Paul Menzel NOAA / NESDIS.
Landsat Downloads & MODIS Downloads Data Sources for GIS in Water Resources by Ayse Kilic, David R. Maidment, and David G. Tarboton GIS in Water Resources.
III LBA Scientific Conference, July 27-29, 2004 SEASONAL ANALYSIS OF THE MOD13A2 (NDVI / EVI) AND MOD15A2 (LAI / fAPAR) PRODUCTS FOR THE CERRADO REGION.
Geoprocessing with GDAL and Numpy in Python Delong Zhao
LP DAAC Status MODIS Science Team Meeting April , 2014 Chris Doescher, PMP LP DAAC Project Manager Dr. David Meyer.
“Using MODIS and POLDER data to develop a generalized approach for correction of the BRDF effect” Eric F. Vermote, Christopher O. Justice Dept of Geography,
VIIRS Land PEATE Masuoka, Wolfe, Isaacman and Devadiga.
Geoscience Australia Simon Oliver Remote Sensing Science and Strategy MODIS Development Activities at ACRES Australian Government Geoscience Australia.
Green Vegetation Fraction (GVF) derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the SNPP satellite Zhangyan Jiang 1,2,
How to Download MODIS Images Dr. A.K.M. Saiful Islam, IWFM, BUET Dr. Sujit Kumar Bala, IWFM, BUET Mr. M. Golam Mahboob, BARI December 2007.
1 Generalized Conversion of HDF-EOS Products to GIS Compatible Formats Larry Klein, Ray Milburn, Cid Praderas, and Abe Taaheri Emergent Information Technologies,
Satellite Data Access – Giovanni, LAADS, and NEO Training Workshop in Partnership with BAAQMD Santa Clara, CA September 10 – 12, 2013 Applied Remote SEnsing.
Introduction Land surface temperature (LST) measurement is important for understanding climate change, modeling the hydrological and biogeochemical cycles,
Sadashiva Devadiga (SSAI) MODIS LDOPE January 17, 2007
MODIS Subsetting and Visualization Tool: Bringing time-series satellite-based land data to the field scientist National Aeronautics and Space Administration.
1ESDIS HDF-EOS Workshop IV Landover, Maryland, September 20, 2000 The Landsat 7 Processing System ( LPS ) Level Zero-R Science Products Michael R. Reid.
MODIS Land and HDF-EOS HDF-EOS Workshop Presentation September 20, 2000 Robert Wolfe NASA GSFC Code 922, Raytheon ITSS MODIS Land Science Team Support.
Land_Cover_CCI – CMUG Co-location Meeting, Reading, March 2011 Land Cover_CCI Pierre Defourny et al. Univ.cath. de Louvain.
Web Services for Earth Science Data Edward Armstrong, Thomas Huang, Charles Thompson, Nga Quach, Richard Kim, Zhangfan Xing Winter ESIP 2014 Washington.
U.S. Department of the Interior U.S. Geological Survey Diving into the Data Pool with DAAC2Disk Kelly Lemig ERT, Inc., contractor to the U.S. Geological.
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data Michael D. King, 1 Eric G. Moody, 1,2 Crystal B. Schaaf, 3 and Steven Platnick.
Toward a Stable Real-Time Green Vegetation Fraction Le Jiang, Dan Tarpley, Felix Kogan, Wei Guo and Kenneth Mitchell JCSDA Science Workshop May 31 – June.
U.S. Department of the Interior U.S. Geological Survey Access to MODIS Land Data Products Through the Land Processes DAAC John Dwyer and Carolyn Gacke,
EOS Terra MODIS Quality Assurance Overview Joseph M Glassy, Director, MODIS Software Development at NTSG School of Forestry, Numerical Terradynamics Simulation.
MODIS Land Product Subsets Suresh K. Santhana Vannan, Robert B. Cook, Bruce E. Wilson, Lisa M. Olsen HDF and HDF-EOS Workshop XII October 15 – October.
WSL Workshop The Long and Winding Road to MODIS Data.
AMSR-E Cryosphere Science Data Product Metrics Prepared by the ESDIS SOO Metrics Team for the Cryosphere Science Data Review January 11-12, 2006.
ORNL DAAC MODIS Subsetting and Visualization tools Tools and services to access subsets of MODIS data Suresh K. Santhana Vannan National Aeronautics and.
MODLAND Volumes and Loads Status MODIS Land Science Team Workshop July 15, 2003 Robert Wolfe MODIS Land Team Support Group NASA GSFC Code 922, Raytheon.
Lori Mann Bruce and Abhinav Mathur
12/2/2015Fall 2002 AGU Meeting1 Generalized EOS Data Converter: Making Data Products Accessible to GIS Tools Larry Klein, Ray Milburn, Cid Praderas and.
Facilitating Access to EOS Data at the NSIDC DAAC Siri Jodha Singh Khalsa ECS Science Coordinator for the National Snow and Ice Data Center, Distributed.
MODIS Snow and Sea Ice Data Products George Riggs SSAI Cryospheric Sciences Branch, NASA/GSFC Greenbelt, Md. Dorothy K.
s Donna J. Scott, Marilyn Kaminski, Jason Wolfe, Terry Haran NSIDC's MODIS Snow and Sea Ice Products NSIDC provides a suite.
Cloud Mask: Results, Frequency, Bit Mapping, and Validation UW Cloud Mask Working Group.
ORNL DAAC: Introduction Bob Cook ORNL DAAC Environmental Sciences Division Oak Ridge National Laboratory.
Vegetation Index Visualization of individual composite period. The tool provides a color coded grid display of the subset region. The tool provides time.
Terra MODIS Collection 4 / 4.5 and Aqua MODIS Collection 4; Sinusoidal Projection Data from 2000 to present; 8-day, 16-day, or annual composites Sites.
Measuring Vegetation Characteristics
SCD Research Data Archives; Availability Through the CDP About 500 distinct datasets, 12 TB Diverse in type, size, and format Serving 900 different investigators.
Page 1 Land PEATE support for CERES processing Ed Masuoka Gang Ye August 26, 2008 CERES Delta Design Review.
MODIS Collection-6 Standard Snow-Cover Product Suite Dorothy K. Hall 1 and George A. Riggs 1,2 1 Cryospheric Sciences Laboratory, NASA / GSFC, Greenbelt,
April NASA Biodiversity and Ecological Forecasting Team Meeting 2013 Extending the Terrestrial Observation and Prediction System (TOPS) to Suomi-NPP.
U.S. Department of the Interior U.S. Geological Survey Discover MODIS Land at your Desk January 17, 2007 Calli B. Jenkerson* MODIS Science Data Specialist.
MODIS Cryosphere Science Data Product Metrics Prepared by the ESDIS SOO Metrics Team for the Cryosphere Science Data Review January 11-12, 2006.
Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived From Terra MODIS Land Products Eric G. Moody 1,2, Michael D. King 1, Steven.
1 Validated Stage 1 Science Maturity Review for Surface Reflectance Eric Vermote Sept 04, 2014.
Data Processing Flow Chart Start NDVI, EVI2 are calculated and Rank SDS are incorporated Integrity Data Check: Is the data correct? Data: Download a) AVHRR.
Terrestrial ECVs Fire/burnt area, Land cover, Soil Moisture.
Goddard Earth Sciences Data and Information Services Center, NASA/GSFC, Code 902, Greenbelt, Maryland 20771, USA INTRODUCTION  NASA Goddard Earth Sciences.
Overview of the MODIS Snow - Ice Project Part 1 MODIS Science Team Meeting Land Team College Park, Md. 18 May 2011 Dorothy K. Hall Cryospheric Sciences.
Armando DATA FILTERING PLAN v2 Tucson, AZ 6/30/11.
Overview: MODLAND Production Status, Schedule and Time Series Issues (C4 to C5 Transition) MODIS Land Collection 5 Workshop Jan. 17, 2007 Robert Wolfe.
Cropland mapping in South America
MODIS Atmosphere Level-3 Product & Web Site Review Paul A. Hubanks Science Systems and Applications, Inc.
Preliminary Analysis of Relative MODIS Terra-Aqua Calibration Over Solar Village and Railroad Valley Sites Using ASRVN A. Lyapustin, Y. Wang, X. Xiong,
ORNL DAAC MODIS Land Product Subsets 1 Suresh K. Santhana Vannan, Robert B. Cook, Bruce E. Wilson, Lisa M. Olsen Environmental Sciences Division, Oak Ridge.
Wildland Fire Emissions Study – Phase 2 For WRAP FEJF Meeting Research in progress by the CAMFER fire group: Peng Gong, Ruiliang Pu, Presented by Nick.
SeaWiFS Highlights July 2002 SeaWiFS Celebrates 5th Anniversary with the Fourth Global Reprocessing The SeaWiFS Project has just completed the reprocessing.
1 MODIS Land C6 Robert Wolfe NASA GSFC Code MODIS &VIIRS Science Team Meeting May 14, 2008.
U.S. Department of the Interior U.S. Geological Survey LP DAAC Big Earth Data Initiative (BEDI) Developed Web Services 1 Jason Werpy LP DAACEnterprise.
Stennis Space Center Time Series Product Tool Don Prados Computer Sciences Corp. John C. Stennis Space Center USDA Forest Service, Asheville, NC September.
Stennis Space Center Phenological Parameters Estimation Tool Presented by Jerry Gasser Lockheed Martin Mission Services John C. Stennis Space Center USDA.
Science Review Panel Meeting Biosphere 2, Tucson, AZ - January 4-5, 2011 Vegetation Phenology and Vegetation Index Products from Multiple Long Term Satellite.
MODIS and S-NPP VIIRS NASA Snow Products
Brian Johnson and Doug Young
Comparison of GPP from Terra-MODIS and AmeriFlux Network Towers
Presentation transcript:

LDOPE QA Tools Sadashiva Devadiga (SSAI) MODIS LDOPE January 18, 2007

Overview Introduction Summary of QA tools Command line syntax Application of tools –Reading metadata and SDS attributes –Reading L2G product –Reading QA bits –Filtering Science Data using QA information –Creating Mosaic of Gridded products –Simple SDS Math –Creating coarse product Summary

Introduction MODIS Land HDF-EOS Product format –Metadata stored as global attributes Core metadata Archive metadata HDF-EOS Structural metadata Product specific attributes (in some products) –Science Data Sets Science Parameter datasets –“500m Surface Reflectance Band 1”,... in MOD09A1, “1 km 16 days NDVI”... in MOD13A2 QA datasets –“500m Surface Reflectance Data State” and “500m Surface Reflectance Band Quality” in MOD09A1 –“1 km 16 days VI Quality” in MOD13A2

Introduction QA tools are developed with feedback from the MODIS Land ST Incorporate the scientific knowledge, experience and insights gained during the substantial MODLAND product development period QA Tools are generic and can be applied to any MODIS Land products Tools run at command line and use unix-like command syntax Output of the tools are HDF files or text files Tools are compatible with C4 and C5 data A subset of these tools are being distributed to the public from LPDAAC ( –Available for following operating systems – Irix/Linux/Solaris/Windows –Documentation available on installation and usage

Summary of LDOPE QA Tools

Command Line Syntax A tool consists of a command name followed by one or more arguments of these type –arguments indicating certain processing parameters –arguments that are input filenames. –Command Format command_name-argument_name=argument_valuefilename(s) Common arguments and meaning –-helpPrint help message for the command. –-help filenamePrint valid values for the various command line arguments of this command. –-sdsInput SDS names. –-ofOutput filename. –-metaCopy metadata from the input file to the output file. –-bitBit numbers. –-xyPixel location in sample and line number. –-bnband numbers.

Example: Reading Metadata read_meta –core MOD11A2.A h20v hdf read_meta –arch MOD11A2.A h20v hdf read_meta –qa MOD09A1.A h19v hdf read_meta -m=INPUTPOINTER,PGEVERSION MOD09A1.A h20v hdf

Example: Reading SDS Attributes read_sds_attributes MOD11A2.A h20v hdf read_sds_attributes -sds="1 km 16 days VI Quality" MOD13A2.A h20v hdf

Example: Reading L2G Task: Read one or more layers from a L2G compact format file Tool: read_l2g Input: L2G HDF file Output: HDF file containing user requested layers from the input HDF file. Example: Read the first two layers of surface reflectance for bands 1, 3, and 4 from the input L2G compact format file MOD09GHK.A h17v hdf Command: read_l2g –layer=1,2 –sds=sur_refl_b01,sur_refl_b03,sur_refl_b04 –of=Layers.MOD09GHK.A h17v hdf MOD09GHK.A h17v hdf Result: Output HDF file will contain six SDS sur_refl_b01_layer1 sur_refl_b02_layer1 sur_refl_b03_layer1 sur_refl_b01_layer2 sur_refl_b02_layer2 sur_refl_b03_layer2

Example: Reading L2G Layers.MOD09GHK.A h17v hdf RGB Composite of surface reflectance from bands 1, 3 and 4 – Layer 1 RGB Composite of surface reflectance from bands 1, 3 and 4 – Layer 2

Example: Reading L2G Task: Read one or more granules from a L2G compact format file Tool: read_l2g Input: L2G HDF file (and the pointer file in case of C4) Output: HDF file containing user requested layers from the input HDF file. Example: Read surface reflectance for bands 1, 3, and 4 for all the granules in the input L2G compact format file MOD09GHK.A h17v hdf Command: read_l2g –gpidx –sds=sur_refl_b01,sur_refl_b03,sur_refl_b04 –of=Granules.MOD09GHK.A h17v hdf -ptr=MODPTHKM.A h17v hdf MOD09GHK.A h17v hdf Result: Output HDF file will contain 9 SDS (for this example) sur_refl_b01_gpnt1sur_refl_b01_gnpt2 sur_refl_b01_gnpt3 sur_refl_b02_gpnt1 sur_refl_b01_gnpt2 sur_refl_b01_gnpt3 sur_refl_b03_gpnt1 sur_refl_b01_gnpt2 sur_refl_b01_gnpt3

Example: Reading L2G Granules.MOD09GHK.A h17v hdf RGB Composite of surface reflectance from bands 1, 3 and 4 Granule 1Granule 2Granule 3

Example: Reading QA Information Task: Decode the pixel level QA Tool: unpack_sds_bits Input: HDF file containing the QA SDS Output: HDF file containing one or more SDS where each SDS corresponds to an user requested qa flag Example: Decode the “aerosol flag”, “internal cloud mask”, “MOD35 cloud mask” and the “land water mask” from MOD09A Command: Unpack_sds_bits –sds=sur_refl_state_500m –bit=0-1,3-5,6-7,10 –of= QA_MOD09A1.A h20v hdf MOD09A1.A h20v hdf Result: Output HDF file will contain four SDS bit_0-1_sur_refl_state_500m bit_3-5_sur_refl_state_500m bit_6-7_sur_refl_state_500m bit_10_sur_refl_state_500m

Example: Reading QA Information MOD09A1.A h20v hdf RGB Composite of surface reflectance from bands 1, 3 and 4 Aerosol flag: Red (0): Climatology, green (1): low, sea green (2): average, high (3): yellow

Example: Reading QA Information MOD09A1.A h20v hdf Internal Cloud Mask, green (0): clear, yellow (1): cloudy MOD35 Cloud Mask, green (0, 1): clear, yellow (2, 3): cloudy

Example: Reading QA Information MOD09A1.A h20v hdf RGB Composite of surface reflectance from bands 1, 3 and 4 Land water mask: Green (1): land, blue (2): coastline and shoreline, cyan (3, 5): inland water

Example: Filtering Science Data Using pixel level QA Task: Filter good quality surface reflectance from MOD09A1 over land where good quality is defined as observations flagged as “low to medium aerosol AND clear AND band quality is good” Tool: mask_sds Input: HDF file containing the SDS to be filtered and file containing QA SDS Output: HDF file containing one or more SDS where observations are filtered by the user specified constraint. Example: Mask or filter good quality observations from surface reflectance bands 1, 3, and 4 of MOD09A1.A h20v hdf Command: mask_sds –sds=sur_refl_b01,sur_refl_b03,sur_refl_b04 –mask= “MOD09A1.A h20v hdf,sur_refl_state_500m,6-7>00,AND,*,*,6- 7<11,AND,*,*,10==0,AND,*,*,3-5==001,AND,*,sur_refl_qc_500m,0-1==00” -of=Masked. MOD09A1.A h20v hdf MOD09A1.A h20v hdf Result: Output HDF file will contain three SDS sur_refl_b01 sur_refl_b02 sur_refl_b03

Example: Filtering Science Data Using pixel level QA MOD09A1.A h20v hdf RGB Composite of surface reflectance from bands 1, 3 and 4 RGB Composite of surface reflectance from bands 1, 3 and 4. Red: fill value forced by the constraint filtering

Example: Mosaic of Gridded Products Task: Make a mosaic of two or more input gridded MODIS Land product Tool: mosaic_sds Input: HDF file Output: HDF file containing the mosaic Example: Make mosaics of NDVI and EVI over South Africa (tiles horizontal 19 – 21 and vertical ) for day Command: mosaic_sds –sds=“1 km 16 days NDVI,1 km 16 days EVI” –of=Mosaic.MOD13A2.A SA.005.hdf MOD13A2.A h19v hdf MOD13A2.A h19v hdf MOD13A2.A h19v hdf MOD13A2.A h20v hdf MOD13A2.A h20v hdf MOD13A2.A h20v hdf MOD13A2.A h21v hdf MOD13A2.A h21v hdf Result: Output HDF file will contain two SDS 1 km 16 days NDVI 1 km 16 days EVI

Example: Mosaic of Gridded Products Mosaic.MOD13A2.A SA.005.hdf 1 km 16 days NDVI1 km 16 days EVI

Example: Simple SDS Math Task: Compute difference/sum/division of two SDSs Tool: math_sds Input: HDF file Output: HDF file containing the sds math result Example: Compute the difference between day and night LST in MOD11A2.A h20v hdf Command: math_sds –math=“LST_Day_1km, MOD11A2.A h20v hdf - LST_Night_1km, MOD11A2.A h20v hdf,INT16,0,0,-1,-2” -of=LST_Diff. MOD11A2.A h20v hdf Result: Output HDF file will contain 1 SDS LST_Day_1km – LST_Night_1km

Example: Simple SDS Math MOD11A2.A h20v hdf LST_Day_1kmLST_Night_1km LST_Day_1km – LST_Night_1km Red: -ve, green 0 – 2K, yellow: 2 – 6K, purple > 6k

Example: Making Coarse Products Task: Make coarse resolution SDS from the full resolution SDS by sub sampling Tool: reduce_sds Input: HDF file containing full resolution SDS Output: HDF file containing the coarse resolution SDS Example: Create coarse resolution 5 km data sets by sub sampling the full resolution surface reflectance bands 1, 3, and 4 in MOD09A1.A h20v hdf Command: reduce_sds –sub –rf=10 –sds=sur_refl_b01,sur_refl_b03,sur_refl_b04 –of=CRS_SS. MOD09A1.A h20v hdf MOD09A1.A h20v hdf Result: Output HDF file will contain 3 SDS sur_refl_b01 sur_refl_b03 sur_refl_b04

Example: Making Coarse Products MOD09A1.A h20v hdf RGB Composite of surface reflectance from bands 1, 3 and 4

Example: Making Coarse Products Task: Make coarse resolution SDS from the full resolution SDS by averaging Tool: reduce_sds Input: HDF file containing full resolution SDS Output: HDF file containing the coarse resolution SDS Example: Create coarse resolution 5 km data sets by averaging the full resolution surface reflectance bands 1, 3, and 4 in MOD09A1.A h20v hdf Command: reduce_sds –avg –rf=10 –sds=sur_refl_b01,sur_refl_b03,sur_refl_b04 –of=CRS_SS. MOD09A1.A h20v hdf MOD09A1.A h20v hdf Result: Output HDF file will contain 3 SDS sur_refl_b01 sur_refl_b03 sur_refl_b04

Example: Making Coarse Products MOD09A1.A h20v hdf RGB Composite of surface reflectance from bands 1, 3 and 4

Example: Making Coarse Products Task: Make coarse resolution land cover product from the full resolution SDS by majority class Tool: reduce_sds Input: HDF file containing full resolution SDS Output: HDF file containing the coarse resolution SDS Example: Create coarse resolution 5 km land cover by majority voting from the full resolution land cover SDS in MOD12Q1.A h20v hdf Command: reduce_sds –cl –rf=5 –sds=Land_Cover_Type1 –of=CRS.MOD12Q1.A h20v hdf MOD12Q1.A h20v hdf Result: Output HDF file will contain 3 SDS Land_Cover_Type1

Example: Making Coarse Products MOD12Q1.A h20v hdf Water Open shrub lands croplands Broadleaf forest, mixed forest, closed shrub lands Savanna Deciduous needle leaf forest grassland

Summary Fixing bugs New tools are under development – e.g. new l2g reader for C5 User feedbacks/comments welcome