Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:

Slides:



Advertisements
Similar presentations
Russell and Norvig Chapter 7
Advertisements

Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Logic.
Artificial Intelligence Knowledge-based Agents Russell and Norvig, Ch. 6, 7.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language.
1 Problem Solving CS 331 Dr M M Awais Representational Methods Formal Methods Propositional Logic Predicate Logic.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7.
Methods of Proof Chapter 7, second half.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Knoweldge Representation & Reasoning
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Rutgers CS440, Fall 2003 Propositional Logic Reading: Ch. 7, AIMA 2 nd Ed. (skip )
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7.
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
February 20, 2006AI: Chapter 7: Logical Agents1 Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent.
Logical Agents (NUS) Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
CHAPTERS 7, 8 Oliver Schulte Logical Inference: Through Proof to Truth.
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Problems in AI Problem Formulation Uninformed Search Heuristic Search Adversarial Search (Multi-agents) Knowledge RepresentationKnowledge Representation.
An Introduction to Artificial Intelligence – CE Chapter 7- Logical Agents Ramin Halavati
S P Vimal, Department of CSIS, BITS, Pilani
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
1 Logical Inference Algorithms CS 171/271 (Chapter 7, continued) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 The Wumpus Game StenchBreeze Stench Gold Breeze StenchBreeze Start  Breeze.
1 Logical Agents Russell & Norvig Chapter 7. 2 Programming Language Moment We often say a programming language is procedural or declarative. What is meant.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
1 Logical Agents Chapter 7. 2 Logical Agents What are we talking about, “logical?” –Aren’t search-based chess programs logical Yes, but knowledge is used.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Logical Agents Russell & Norvig Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.
LOGICAL AGENTS CHAPTER 7 AIMA 3. OUTLINE  Knowledge-based agents  Wumpus world  Logic in general - models and entailment  Propositional (Boolean)
CS666 AI P. T. Chung Logic Logical Agents Chapter 7.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Notes 7: Knowledge Representation, The Propositional Calculus
EA C461 – Artificial Intelligence Logical Agent
EA C461 – Artificial Intelligence Logical Agent
Logical Agents Chapter 7.
Artificial Intelligence Logical Agents
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Logical Agents Chapter 7 Selected and slightly modified slides from
Logical Agents Reading: Russell’s Chapter 7
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Agents and Propositional Logic.
Logical Agents Chapter 7.
Knowledge Representation I (Propositional Logic)
Methods of Proof Chapter 7, second half.
Problems in AI Problem Formulation Uninformed Search Heuristic Search
Presentation transcript:

Logical Agents Chapter 7

Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.: –A>5, B>A,  B>5 –Two blind persons, each bought 2 pairs of black socks and 2 pairs of white socks. Unfortunately, they mixed up the eight pairs. All pairs are in their original packages. How can they get 2 pairs of black socks and 2 pairs of white socks?

Wumpus World PEAS description Performance measure –gold +1000, death –-1 per step, -10 for using the arrow Environment –Squares adjacent to wumpus are smelly –Squares adjacent to pit are breezy –Glitter iff gold is in the same square –Shooting kills wumpus if you are facing it –Shooting uses up the only arrow –Grabbing picks up gold if in same square –Releasing drops the gold in same square Sensors: Stench, Breeze, Glitter, Bump, Scream, Bump Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization Fully Observable No – only local perception Deterministic Yes – outcomes exactly specified Static Yes – Wumpus and Pits do not move Discrete Yes Single-agent? Yes – Wumpus is essentially a natural feature

Exploring a wumpus world

Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language Semantics define the "meaning" of sentences; –i.e., define truth of a sentence in a world E.g., the language of arithmetic –x+2 ≥ y is a sentence; x2+y > {} is not a sentence –x+2 ≥ y is true iff the number x+2 is no less than the number y Possible worlds (i.e. models) –x+2 ≥ y is true in a world where x = 7, y = 1 –x+2 ≥ y is false in a world where x = 0, y = 6

Entailment Entailment means that one thing follows from another: KB ╞ α Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true –E.g., x+y = 4 entails 4 = x+y

Entailment in the wumpus world Situation after detecting nothing in [1,1], moving right, breeze in [2,1] Consider possible models for KB assuming only pits 3 Boolean choices  8 possible models

Wumpus models

KB = wumpus-world rules + observations

Wumpus models KB = wumpus-world rules + observations α 1 = "[1,2] is safe", KB ╞ α 1, proved by model checking

Wumpus models KB = wumpus-world rules + observations

Wumpus models KB = wumpus-world rules + observations α 2 = "[2,2] is safe", KB ╞ α 2

Inference KB ├ i α = sentence α can be derived from KB by procedure i Soundness: i is sound if whenever KB ├ i α, it is also true that KB╞ α Completeness: i is complete if whenever KB╞ α, it is also true that KB ├ i α Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure. That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax Propositional logic is the simplest logic – illustrates basic ideas Atomic: the proposition symbols P 1, P 2 etc are sentences Composition: –If S is a sentence,  S is a sentence (negation) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (conjunction) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (disjunction) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (implication) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (biconditional) –An example sentence: (P 1  P 2 )  P 3

Propositional logic: Semantics Each model specifies true/false for each proposition symbol E.g. P 1,2 P 2,2 P 3,1 falsetruefalse With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model m:  Sis true iff S is false S 1  S 2 is true iff S 1 is true and S 2 is true S 1  S 2 is true iff S 1 is true or S 2 is true S 1  S 2 is true iffS 1 is false orS 2 is true i.e., is false iffS 1 is true andS 2 is false S 1  S 2 is true iffS 1  S 2 is true andS 2  S 1 is true Simple recursive process evaluates an arbitrary sentence, e.g.,  P 1,2  (P 2,2  P 3,1 ) = true  (true  false) = true  true = true

Truth tables for connectives

Wumpus world sentences Let P i,j be true if there is a pit in [i, j]. Let B i,j be true if there is a breeze in [i, j]. Initially:  P 1,1  B 1,1 B 2,1 "Pits cause breezes in adjacent squares" B 1,1  (P 1,2  P 2,1 ) B 2,1  (P 1,1  P 2,2  P 3,1 )

Truth tables for inference

Inference by enumeration Depth-first enumeration of all models is sound and complete For n symbols, time complexity is O(2 n ), space complexity is O(n)

Logical equivalence Two sentences are logically equivalent iff true in same models: α ≡ ß iff α╞ β and β╞ α

Validity and satisfiability A sentence is valid if it is true in all models, e.g., True,A  A, A  A, (A  (A  B))  B Validity is connected to inference via the Deduction Theorem: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A  B, C A sentence is unsatisfiable if it is true in no models e.g., A  A Can an inference problem be solved as a satisfiability problem?: KB ╞ α if and only if ______ is unsatisfiable

Validity and satisfiability A sentence is valid if it is true in all models, e.g., True,A  A, A  A, (A  (A  B))  B Validity is connected to inference via the Deduction Theorem: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A  B, C A sentence is unsatisfiable if it is true in no models e.g., A  A Can an inference problem be solved as a satisfiability problem?: KB ╞ α if and only if (KB  α) is unsatisfiable

Proof methods KB ╞ α ? Need a proof. methods –Resolution: show (KB  α) is unsatisfiable –Forward/backward chaining: directly infer α from KB using some inference rules –Model checking on (KB  α) truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)

Resolution Conjunctive Normal Form (CNF) conjunction of disjunctions of literals E.g., (A   B)  (B   C   D) Resolution inference rule (for CNF): l i  …  l k, m 1  …  m n l i  …  l i-1  l i+1  …  l k  m 1  …  m j-1  m j+1 ...  m n where l i and m j are complementary literals. E.g., P 1,3  P 2,2,  P 2,2 P 1,3 Resolution is sound and complete for propositional logic

Conversion to CNF B 1,1  (P 1,2  P 2,1 ) 1. Eliminate , replacing α  β with (α  β)  (β  α). (B 1,1  (P 1,2  P 2,1 ))  ((P 1,2  P 2,1 )  B 1,1 ) 2. Eliminate , replacing α  β with  α  β. (  B 1,1  P 1,2  P 2,1 )  (  (P 1,2  P 2,1 )  B 1,1 ) 3. Move  inwards using de Morgan's rules and double- negation: (  B 1,1  P 1,2  P 2,1 )  ((  P 1,2   P 2,1 )  B 1,1 ) 4. Apply distributivity law (  over  ) and flatten: (  B 1,1  P 1,2  P 2,1 )  (  P 1,2  B 1,1 )  (  P 2,1  B 1,1 )

Resolution algorithm Proof by contradiction, i.e., show KB  α unsatisfiable

Resolution example KB = (B 1,1  (P 1,2  P 2,1 ))  B 1,1 α =  P 1,2

Forward and backward chaining Horn Form (restricted) KB = conjunction of Horn clauses –Horn clause = proposition symbol; or (conjunction of symbols)  symbol –E.g., C  (B  A)  (C  D  B) Modus Ponens (for Horn Form): complete for Horn KBs α 1, …,α n,α 1  …  α n  β β Can be used with forward chaining or backward chaining. These algorithms are very natural and run in linear time

Forward chaining Idea: fire any rule whose premises are satisfied in the KB, –add its conclusion to the KB, until query is found

Forward chaining example

Efficient propositional inference Two families of efficient algorithms for propositional inference: Complete backtracking search algorithms DPLL algorithm (Davis, Putnam, Logemann, Loveland) Incomplete local search algorithms –WalkSAT algorithm

The DPLL algorithm Determine if an input propositional logic sentence (in CNF) is satisfiable. Improvements over truth table enumeration: 1.Early termination A clause is true if any literal is true. A sentence is false if any clause is false. 2.Pure symbol heuristic Pure symbol: always appears with the same "sign" in all clauses. e.g., In the three clauses (A   B), (  B   C), (C  A), A and B are pure, C is impure. Make a pure symbol literal true. 3.Unit clause heuristic Unit clause: all but only one literal is made false in the clause The only literal in a unit clause must be true

The DPLL algorithm

The WalkSAT algorithm Incomplete, local search algorithm Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses Balance between greediness and randomness

The WalkSAT algorithm