Visualizing Off-Screen Locations on Small Mobile Displays Sean Gustafson master of science thesis defense Dec 15 / 2008
2 off-screen viz f overviewarrowshalo
3 ated work rel
4 overviews [Plaisant 95 and many others]
5 fisheye views [Carpendale 01]
6 simple arrows [Tecmo Bowl 87]
7 scaled and stretched arrows [Burigat 06]
8 [Gustafson 07] edgeradar
9 [Baudisch 03] halo
10 [Baudisch 03] halo
11 the problem: clutter
12 the problem: clutter
13 corner (also not great: corners) side
14 cut linescolor ovalsclustering Irani et al. Baudisch & Rosenholtz initial approaches separate visually
15 e wedge th
16 leg target base wedge
17 halowedge
18 3 degrees of freedom rotation base length intrusion
19 avoiding overlap rotation base length intrusion
20 out algorithm lay
21 avoidance algorithm
22 avoidance algorithm
23 avoidance algorithm
24 avoidance algorithm
25 avoidance algorithm
26 leaves 2 degrees intrusion ~ distance base-width ~ distance
27 ser study u
28 two interface conditions halo and wedge
29 halo task 1: locate wedge same as original halo paper
30 halo task 2: closest wedge same as original halo paper
31 halo task 3: avoid wedge same as original halo paper
32 IV: density sparsedense
33 IV: corner side corner
34 36 participants
35 1.wedge is more accurate 2.larger improvement in dense condition 3.larger improvement in corners (no hypothesis about task time) hypotheses
36 results
37 participants were significantly more accurate when using the wedge
38 error in pixels locate task Error (pixels) SparseDense Side Wedge Halo 80
39 error in pixels locate task Error (pixels) SparseDense Side Wedge Halo 80 Corner SparseDense
40 other results no interesting results from the other tasks or from completion time.
41 other results WedgeHaloNo Preference Locate25101 Avoid21132 Closest18144 preferences
42 1.wedge is more accurate 2.larger improvement in dense condition 3.larger improvement in corners hypotheses
43 eling pointing mod
44
45 beam
46 beam
47 beam
48 orbital beam
49 intrusion
50 intrusion
51 aperture
52 aperture
53 rotation
54 rotation
55 experiment to gather accuracy data data collection
56 experiment to gather accuracy data data collection distance legLength1 legLength2 baseLength
57 results Depth Error Distance Breadth Error
58 results Depth Error bias length width
59 results - bias
60 results - length
61 minimizing errors choose smallest base and leg length that still maintains small orbital and low bias base length of at least 50px, 100px for longer distances a large leg length (above 8px) does not result in smaller orbital avoid heavily rotating wedges
62 conclusion
63 1.summary of existing techniques and criteria for evaluating them 2.introduction of Wedge 3.introduction of the concept of degrees of freedom and dynamic layout 4.evaluation of Wedge 5.preliminary model contributions
64 thanks
65
66 IV: density sparse dense
67
68 correcting errors
69 correcting errors
70
71 fied pointing uni wedge=
72 intrusion 0 citylights
73 aperture 0 stretched arrows
74 ? halo
75 round bases distance information in cornerdistance information along arc
76 halo aperture 360
77
78 locate task SparseDense Error (pixels) SparseDense SideCorner Wedge Halo 80 SparseDense Time (ms) SparseDense SideCorner Wedge Halo 0 full results
79 avoid task full results SparseDense Error Rate % SparseDense Wedge Halo SideCorner Time (ms) SideCorner Wedge Halo SparseDenseSparseDense
80 closest task full results SparseDense Error Rate % SparseDense Wedge Halo SideCorner SparseDense Time (ms) SparseDense SideCorner Wedge Halo
81