Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov. 2007 Linear Response 50 Equilibrium & NE response collaborators: Akira.

Slides:



Advertisements
Similar presentations
Relaxation Time Phenomenon & Application
Advertisements

Anisotropy and Dzyaloshinsky- Moriya Interaction in V15 Manabu Machida, Seiji Miyashita, and Toshiaki Iitaka IIS, U. Tokyo Dept. of Physics, U. Tokyo RIKEN.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
ISCOM2009 International symposium on crystalline organic metals, superconductors, ferromagnets announcement At Niseko in Hokkaido, Japan On Sep. 12 – 17,
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
Stochastic theory of nonlinear auto-oscillator: Spin-torque nano-oscillator Vasil Tiberkevich Department of Physics, Oakland University, Rochester, MI,
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Transverse force on a magnetic vortex Lara Thompson PhD student of P.C.E. Stamp University of British Columbia July 31, 2006.
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Numerical study on ESR of V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita June 27- July 1, 2005 Trieste, Italy.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Rodolfo Jalabert CHARGE AND SPIN DIPOLE RESONANCES IN METALLIC NANOPARTICULES : collective versus single-particle excitations R. Molina (Madrid) G. Weick.
ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4.
Introduction to Single Molecular Magnet
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Determination of Spin-Lattice Relaxation Time using 13C NMR
Blaubeuren 2006 Relaxation mechanisms in exchange coupled spin systems – I Line broadening and the Kubo-Tomito approach Joachim Deisenhofer Université.
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
Dynamical decoupling in solids
2013 | Institute of Nuclear Physics Darmstadt/SFB 634 | Achim Richter | 1 Exceptional Points in Microwave Billiards with and without Time- Reversal Symmetry.
Spins, Effective Spins, Spin Relaxation, Non-Radiative Transitions and all that Marshall Stoneham.
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
Outline Review of extended ensemble methods (multi-canonical, Wang-Landau, flat-histogram, simulated tempering) Replica MC Connection to parallel tempering.
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Single-ion and exchange anisotropy effects in small single-molecule magnets* Richard A. Klemm University of Central Florida, Orlando, FL USA and Dmitri.
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
1 Heat Conduction in One- Dimensional Systems: molecular dynamics and mode-coupling theory Jian-Sheng Wang National University of Singapore.
Single-molecule-mediated heat current between an electronic and a bosonic bath In Collaboration with: Avi Schiller, The Hebrew University Natan Andrei,
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo)
Microscopic model of photon condensation Milan Radonjić, Antun Balaž and Axel Pelster TU Berlin,
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Single Molecular Magnets
1 The phonon Hall effect – NEGF and Green- Kubo treatments Jian-Sheng Wang, National University of Singapore.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Magnon Another Carrier of Thermal Conductivity
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
-From Introduction to Outlook – Ochanomizu University F. Shibata.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Nonperturbative-NonMarkovian Quantum Dissipative Dynamics: Reduced Hierarchy Equations Approach Y. Tanimura, Kyoto University.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
Calculating Nonlinear Response Functions from Gaussian-Markovian Quantum Fokker-Planck Approach Yoshitaka Tanimura Department of Chemistry Kyoto University.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
The University of Tokyo Seiji Miyashita
Dynamical correlations & transport coefficients
National University of Singapore
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Dynamical correlations & transport coefficients
Quantum thermal transport from classical molecular dynamics
Alternating Antisymmetric Interaction in Nanoscale Iron Ring
Magnetization processes in V15
Dynamical correlations & transport coefficients
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
NMR relaxation. BPP Theory
Hiroyuki Nojiri, Department of Physics, Okayama University
Geometric phase and the Unruh effect
Presentation transcript:

Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira Ogasahara, Keiji Saito, Chikako Uchiyama, and Mizuhiko Saeki

ESR line shape in strongly interacting spin systems Temperature-dependence of the shift and width in low-dimensional quantum spin systems Y. Ajiro, et al: JPSJ 63 (1994) 859. Spin trimer: 3CuCl2 ・ 2Dioxane FF AF

Microscopic expression of the line shape from Hamiltonian Kubo Formula R. Kubo: JPSJ 12 (1957) 570 R. Kubo & K.Tomita JPSJ (1954) 888 Pure quantum dynamics

Shift from the PMR Paramagnetic Resonance Isotropic models Perturbation

Shift from the PMR Paramagnetic Resonance Isotropic models Perturbation

Studies on the line shape F. Bloch: PR 70 (1946) 460. Nuclear Induction (Bloch equation) J. H. Van Vleck: PR 74 (1948) Dipolar broadening, and exchange narrowing N. Bloembergen, E. M. Purcell and R. V. Pound: PR 73 (1948) 679. Relaxation Effects in Nuclear Magnetic Resonance Absorption. I. Solomon: PR 99 (1955) 559. Relaxation processes in a system of two spins F. Bloch: PR 105 (1957) General theory of relaxation A. Abragam: The principles of Nuclear Magnetism, Oxford Univ. Press (1978)

Expression of the admittance Pure quantum dynamics Eigenvalue and eigenvectors of the Hamiltonian

Shift & Width Peak position Peak width

Nagata-Tazuke Dependence (J. Kanamori & M.Tachiki JPSJ 48 (1962) 50) K. Nagata and Y. Tazuke: JPSJ 32 (1972) 337 1D Heisenberg model with Dipole-dipole interaction

1D Heisenberg model Dipole-dipole interaction Paramagnetic resonance N=4 Constant H

Frequency sweep abd Field sweep

Line shape as an ensemble of delta-function N=8

Shift 1D Heisenberg AF Temperature Dependence Angle Dependence SM, T. Yoshino, A. Ogasahara JPSJ 68 (1999) 655

Width Magic Angle R.E. Dietz, et al. PRL 26 (1971) T.T. Cheung, et al. PRB 17 (1978) 1266 SM, T. Yoshino, A. Ogasahara JPSJ 68 (1999) 655 parallel magic angleperpendicular

Zigzag Chain A. Ogasahara and S. Miyashita J. Phys. Soc. Jpn. Suppl. B 72,44-52 (2003).

Spiral structure Dipole-dipole interaction DM interaction parallel perpendicular 12 3 r=1 a

Spriral structure Dipole-dipole interaction r r=0.1 parallelr=0.2

r=0.5 r=0.5 modified

Spiral structure DM interaction d(x,z) (0,0) r=0.5 parallel (0,0) r=0.5 perpendicular

DM parallel d(1,0) (1,0) r=0.5 parallel (1,0) r=0.5 perpendicular D

DM perpendicular d(0,1) (0,1) r=0.5 parallel(0,1) r=0.5 perpendicular

d(0,5) (0,5) r=0.5 parallel (0,5) r=0.5 perpendicular

d(1,1) (1,1) r=0.5 x (1,1) r=0.5 z

d(3,3) (3,3) r=0.5 x(3,3) r=0.5 z

Response in dissipative dynamics pure quantum dynamics quantum dynamics with dissipation Relaxation effects: I. Solomon: PR 99 (1955) 559. Relaxation processes in a system of two spins F. Bloch: PR 105 (1957) General theory of relaxation Y. Hamano and F. Shibata: JPSJ 51 (1982) 1727,2721,2728. M. Saeki: Prog. Theor. Phys. 67 (1982) : relaxation method Prog. Theor. Phys. 115 (2006) 1. : TCLE method POSTER presentation

Dissipative dynamics Quantum Master equation method Quantum master equation quantum dynamics with dissipation F. Bloch: PR 105 (1957) S. Nakajima: PTP 20 (1958) 987, R. Zwanzig: J. Chem. Phys. 33 (1960) A. G. Redfield: Adv. Magn. Reson. 1 (1965) 1. H. Mori: PTP 33 (1965) 423. M. Tokuyama and H. Mori: PTP 55 (1976) 411. N. Hashitsume, F. Shibata and M. Shingu: J. Stat. Phys. 17 (1977) 155 & 171. T. Arimitsu and H. Umezawa: PTP 77 (1987) 32.

Studies on the line shape F. Bloch: PR 70 (1946) 460. Nuclear Induction (Bloch equation) J. H. Van Vleck: PR 74 (1948) Dipolar broadening, and exchange narrowing N. Bloembergen, E. M. Purcell and R. V. Pound: PR 73 (1948) 679. Relaxation Effects in Nuclear Magnetic Resonance Absorption. I. Solomon: PR 99 (1955) 559. Relaxation processes in a system of two spins F. Bloch: PR 105 (1957) General theory of relaxation A. Abragam: The principles of Nuclear Magnetism, Oxford Univ. Press (1978)

Time evolution of the density matrix in dissipative system K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) Independent phonon bath

Quantum dynamics of magnetization Molecular magnets V6 Cu3 Ni4 V15 Mn12 Fe8

Phonon-bottleneck effect I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) K. Saito & SM. JPSJ (2001) Plateau in the magnetization process due to thermal contact with the bath

Field sweeping with thermal bath Fast sweepingSlow sweeping K. Saito & SM. JPSJ (2001) Magnetic Foehn Effect LZS

Fe-rings H. Nakano & SM, JPSJ 70(2001) 2151 Y. Ajiro & Y. Inagaki Y. Narumi & K. Kindo Fe2 Y. Shapira, et al PRB59 (1999) 1046

Fast sweep region? V=0.002,....., 0.28T/s [Ni(hmp)(dmb)Cl] 4 En-Che Yang,et al: Inorg. Chem. 45 (2006) 529

LZ transition + Thermal relaxation + MFE v=0.0512,....,

Formulation of line-shape with dissipative dynamics

Eigenmode of time-evolution operator I. Knezevic and D. K. Ferry: Phys. Rev. E66(2003) , Phys. Rev.A 69 (2004) S. Miyashita and K. Saito: Physica B (2003) 1142.

Explicit form of the autocorrelation

Dynamical susceptibility Line shape where

Condition for relaxation to the equilibrium distribution KMS relation for correlation of the bath Steady state

Paramagnetic Resonance

Exchange narrowing

Dipole-dipole interaction

Resonance and dissipation

Summary Direct numerical estimation of the line shape Ensemble of the delta-functions Geometrical effects Estimation of the width due to dissipative dynamics Quantum Master equation method Width due to the dissipative dynamics Analysis of the themal bath: Coupling to the system : X Relaxation function: Φ short-relaxation approximation? Exchange narrowing Motional narrowing? Other related topics Quantum narrowing effect in the spin-Peierls transition Micro-wave heating in quantum system

Quantum narrowing effect H. Onishi and SM: JPSJ 72(2003) 392 ◆ effects of quantum lattice fluctuation becomes small when m small Spin-Peierls systems

Effect of AC field in complicated system -- Micro-wave heating -- M. Machida, K. Saito and SM: JPSJ 71(2002) 2427 Relation between the eigen state of the Hamiltonian and that of the Floquet operator: (POSTER by Hijii)

Thank you very much