Weds. Feb. 5, 2014PHYS 1442-004, Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #7 Wednesday February 5, 2014 Dr. Andrew Brandt CH 18 Electric Current.

Slides:



Advertisements
Similar presentations
Electric currents Chapter 18. Electric Battery Made of two or more plates or rods called electrodes. – Electrodes are made of dissimilar metals Electrodes.
Advertisements

Monday, Feb. 20, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #10 Monday, Feb. 20, 2012 Dr. Jaehoon Yu Electric Current.
CH 20-1.
Current and Resistance
Electric Currents and Resistance
Resistance. Definition Opposition to the flow of electrons When electrons pass through materials with high resistance, they collide with its molecules.
Chapter 27: Current and Resistance Reading assignment: Chapter 27 Homework 27.1, due Wednesday, March 4: OQ1, 5, 14 Homework 27.2, due Friday, March 6:
Current and Resistance
Wednesday, Sept. 28, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Wednesday, Sept. 28, 2005 Dr. Jaehoon Yu Quiz Results.
Electric Circuits Count Alessandro Volta ( ) André Marie AMPÈRE ( ) Charles Augustin de Coulomb (1736 – 1806) Georg Simon Ohm (1787.
1 Chapter 27 Current and Resistance. 2 Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Copyright © 2009 Pearson Education, Inc. Admin: No discussion sections this week. Register for MasteringPhysics Course ID: MPHOLDER67874.
Chapter 25 Electric Currents and Resistance
Chapter 18 Electric Currents.
Electric Currents and Resistance
Lecture 12 Current & Resistance (2)
-Electric Current -Resistance -Factors that affect resistance -Microscopic View of Current AP Physics C Mrs. Coyle.
Chapter 24 Electric Current. The electric current I is the rate of flow of charge through some region of space The SI unit of current is Ampere (A): 1.
Current, Voltage and Resistance Electricity. Current Electricity What do turning on a light, turning on a radio, and turning on your television have in.
Chapter 18 Electric Currents.
Wednesday, Feb. 15, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #9 Wednesday, Feb. 15, 2006 Dr. Jaehoon Yu Molecular.
Chapter 18 Electric Currents The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive.
Electric Current Chapter 19 problems 1-43 odd OBJECTIVES 4 After studying the material of this chapter the student should be able to: 1. Explain how.
Chapter 17 Current and Resistance. Electric Current Let us look at the charges flowing perpendicularly to a surface of area A The electric current is.
Copyright © 2009 Pearson Education, Inc. Lecture 6: Electric Currents & Resistance.
 I1I1   R R R I2I2 I3I3 Lecture 11 Current & Resistance.
Monday, Oct. 3, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #10 Monday, Oct. 3, 2005 Dr. Jaehoon Yu Electric Current.
Thursday, Oct. 6, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #12 Thursday, Oct. 6, 2011 Dr. Jaehoon Yu Electric Current.
Electric Current and Resistance Unit 16. Electric Current  The current is the rate at which the charge flows through a surface Look at the charges flowing.
Wednesday, June 12, 2013 PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #6 Wednesday, June 12, 2013 Dr. Jaehoon Yu Chapter.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage.
Weds., Jan. 29, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #5 Wednesday January 29, 2014 Dr. Andrew Brandt CH 17 Electric Potential.
Monday, Feb. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #10 Monday, Feb. 27, 2006 Dr. Jaehoon Yu Ohm’s Law: Resisters.
Electric Current and Resistance Physics. Potential Difference  Charges can “lose” potential energy by moving from a location at high potential (voltage)
Phys 2180 Lecture (5) Current and resistance and Direct current circuits.
Tuesday, Sep. 25, PHYS 1444 Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #9 Chapter 24 Chapter 25 Tuesday Sep. 25, 2012 Dr. Andrew Brandt HW.
CH-20: Electric Circuits. What we learned so far? Electric Force Electric Field Ch 19: Electric potential difference (or Voltage) V is a scalar. SI unit:
Electric Circuits Count Alessandro Volta ( ) André Marie AMPÈRE ( ) Charles Augustin de Coulomb (1736 – 1806) Georg Simon Ohm (1787.
Monday, June 22, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #6 Monday, June 22, 2009 Dr. Jaehoon Yu Chapter 18 -Microscopic.
Tuesday June 26, PHYS 1444 Dr. Andrew Brandt PHYS 1444 Lecture #7 Tuesday June 26, 2012 Dr. Andrew Brandt HW4 assigned due today, test ch
Chapter 17 Current and Resistance. Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is.
Current and Resistance
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
Thursday, Feb. 24, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #10 Chapter 25 Thursday Feb 24, 2011 Dr. Andrew Brandt HW4 Ch 24.
Tuesday, Feb. 22, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #9 Chapter 24 Chapter 25 Tuesday Feb 22, 2011 Dr. Andrew Brandt.
Wednesday, June 17, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #5 Wednesday, June 17, 2009 Dr. Jaehoon Yu Chapter.
Electric Currents AP Physics Chapter 18. Electric Currents 18.1 The Electric Battery.
Chapter 27: Current and Resistance Fig 27-CO, p Electric Current 27.2 Resistance and Ohm’s Law 27.4 Resistance and Temperature 27.6 Electrical.
Monday, Feb. 19, PHYS , Spring 2007 Dr. Andrew Brandt PHYS 1444 – Section 004 Lecture #9 Mon day, Feb Dr. Andrew Brandt Electric.
Mondady Feb. 10, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #8 Monday February 10, 2014 Dr. Andrew Brandt CH 18 Electric Power.
Electric Currents Charges in motion.. Creating Potential Difference. Alessandro Volta ( ) –Ranked potentials created by combing two metal discs.
Chapter 18 Electric Currents. Why study electric current? Most electrical devices depend on electric current. For example… ◦ Light bulbs ◦ Heating elements.
Chapters 16-1,2,3,5; 17-1; 18-2,3,4,5 Coulomb’s Law, Ohm’s Law, Power and Resistivity © 2014 Pearson Education, Inc.
I Chapter 25 Electric Currents and Resistance. I Problem (II) A 0.50μF and a 0.80 μF capacitor are connected in series to a 9.0-V battery. Calculate.
Chapter 18 Electric Currents. Units of Chapter 18 The Electric Battery Electric Current Ohm’s Law: Resistance and Resistors Resistivity Electric Power.
I Chapter 25 Electric Currents and Resistance. I Problem 5 5. (II) An electric clothes dryer has a heating element with a resistance of 8.6Ω (a) What.
Chapter 27: Current and Resistance
Chapter 27: Current and Resistance
PHYS 1444 – Section 003 Lecture #12
PHYS 1444 – Section 002 Lecture #12
PHYS 1444 – Section 003 Lecture #10
PHYS 1444 – Section 003 Lecture #10
PHYS 1444 – Section 002 Lecture #13
PHYS 1444 – Section 002 Lecture #12
Chapter 25 Electric Currents and Resistance
PHYS 1442 – Section 001 Lecture #6
PHYS 1444 Lecture #6 Thursday June 21, 2012 Dr. Andrew Brandt
Circuit Components.
Chapter 27: Current and Resistance
PHYS 1441 – Section 002 Lecture #11
Presentation transcript:

Weds. Feb. 5, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #7 Wednesday February 5, 2014 Dr. Andrew Brandt CH 18 Electric Current Resistance The Battery Ohm’s Law: Resistors Resistivity

Announcements a) HW every Tuesday at 10pm b) HW4 on ch 18 will be assigned weds night or thurs morning due 11th c) shortish HW5 on part of ch 19 due 18 th d) Test on Weds. Feb. 19 th ch plus part of ch 19 th Mostly multiple guess, bring a scantron, I don’t know how many problems Weds. Feb. 5, PHYS , Dr. Andrew Brandt

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Electric Current and Resistance So far we have been studying electrostatics: –The charges have been at rest Now we will learn electrodynamics –Charges in motion What is the electric current? –A flow of electric charge –Examples of things that use electric current? In an electrostatic situation, there is no electric field inside a conductor but when there is current, there is a field inside a conductor –Electric field is needed to keep charges moving

Weds. Feb. 5, PHYS , Dr. Andrew Brandt The Electric Battery What is a battery? –A device that produces electrical energy from the stored chemical energy and produces electricity. Electric battery was invented by Volta in 1790s in Italy –It was made of disks of zinc and silver based on his research that certain combinations of materials produce a greater electromotive force (emf), or potential, than others Simplest batteries contain two plates made of dissimilar metals, electrodes –Electrodes are immersed in a solution, electrolyte –This unit is called a cell and many of these form a battery Zinc and Iron in the figure are called terminals

Weds. Feb. 5, PHYS , Dr. Andrew Brandt How does a battery work? One of the electrodes in the figure is zinc and the other carbon The acid electrolyte reacts with the zinc electrode and dissolves it. Each zinc atom leaves two electrons on the electrode and enters into the solution as a positive ion  the zinc electrode acquires negative charge and the electrolyte becomes positively charged The carbon electrode picks up the positive charge Since the two terminals are oppositely charged, there is a potential difference between them

Weds. Feb. 5, PHYS , Dr. Andrew Brandt How does a battery work? When the terminals are not connected, a certain amount of zinc is dissolved into the solution establishing an equilibrium condition. How is a particular equilibrium potential maintained? –If the terminals are not connected: the zinc electrode becomes negatively charged up to the equilibrium pint zinc ions then recombine with the electrons in the zinc electrode Why does battery go dead? –When the terminals are connected, the negative charges will flow away from the zinc electrode –More zinc atoms dissolve into the electrolyte to produce more charge –One or more electrodes get used up stopping the flow of charge

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Electric Current When a circuit is powered by a battery (or a source of emf), charge can flow through the circuit. Electric Current: Any flow of charge –Current can flow whenever there is potential difference between the ends of a conductor (or when the two ends have opposite charges) –Electric current in a wire can be defined as the net amount of charge that passes through the wire’s full cross section at any point per unit time (just like the flow of water through a pipe) –Average current is defined as: –The instantaneous current is: –What kind of a quantity is the current? Unit of current? C/s 1A=1C/s In a single circuit, conservation of electric charge guarantees that the current at one point of the circuit is the same as any other point on the circuit. Scalar

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Example Current is the flow of charge: A steady current of 2.5A flows in a wire for 4.0min. (a) How much charge passed by any point in the circuit? (b) How many electrons would this be? Current is total amount charge flow through a circuit in a given time. So from we obtain The total number of electrons passed through the circuit is

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Direction of the Electric Current What do conductors have in abundance? –Free electrons What happens if a continuous loop of conducting wire is connected to the terminals of a battery? –Electrons start flowing continuously through the wire as soon as both the terminals are connected to the wire. How? The potential difference between the battery terminals sets up an electric field inside the wire and in the direction parallel to it Free electrons in the conducting wire get attracted to the positive terminal The electrons leaving negative terminal flow through the wire and arrive at the positive terminal –Electrons flow from negative to positive terminal –Due to historical convention, the direction of the current is opposite to the direction of flow of electrons  Conventional Current

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Ohm’s Law: Resistance and Resistors What do we need to produce electric current? –Potential difference Georg S. Ohm experimentally established that the current is proportional to the potential difference ( ) –If we connect a wire to a 12V battery, the current flowing through the wire is twice that of 6V, three times that of 4V and four times that of 3V battery. –What happens if we reverse the sign of the voltage? It changes the direction of the current flow Does not change the magnitude of the current –Just as in the case of water flow through a pipe, if the height difference is large the flow rate is large  If the potential difference is large, the current is large.

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Ohm’s Law: Resistance The exact amount of current flow in a wire depends on –The voltage –The resistance of the wire to the flow of electrons Just like the diameter and composition of a water pipe slows down water flow Electrons are slowed down due to interactions with the atoms of the wire The higher the resistance the less the current for the given potential difference V –So how would you define resistance? So that current is inversely proportional to the resistance –Often it is rewritten as –What does this mean? The metal conductor’s resistance R is a constant independent of V. –This linear relationship is not valid for some materials like diodes, vacuum tubes, transistors etc.  These are called non-ohmic Ohm’s Law Unit? ohms

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Example Flashlight bulb resistance: A small flashlight bulb draws 300 mA from its 1.5V battery. (a) What is the resistance of the bulb? (b) If the voltage drops to 1.2V, how would the current change? From Ohm’s law, we obtain If the resistance did not change, the current is Would the current increase or decrease, if the voltage reduces to 1.2V? That would be a decrease!

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Ohm’s Law: Resistors All electric devices offer resistance to the flow of current. –Filaments of light bulbs or heaters are wires with high resistance causing electrons to lose their energy in the wire –In general connecting wires have low resistance compared to other devices in the circuit In circuits, resistors are used to control the amount of current –Resistors offer resistance of less than one ohm to millions of ohms –Main types are “wire-wound” resistors which consists of a coil of fine wire “composition” resistors which are usually made of semiconductor carbon thin metal films When drawn in the circuit, the symbol for a resistor is: Wires are drawn simply as straight lines

Weds. Feb. 5, Ohm’s Law: Resistor Values Resistors have their resistance color-coded on its body The color-coding follows the convention below: ColorNumberMultiplierTolerance Black01=10 0 Brown110 1 Red210 2 Orange310 3 Yellow410 4 Green510 5 Blue610 6 Violet710 7 Gray810 8 White910 9 Gold % Silver % None20% What is the resistance of the resistor in this figure? PHYS , Dr. Andrew Brandt

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Resistivity It is experimentally found that the resistance R of a metal wire is directly proportional to its length l and inversely proportional to its cross-sectional area A –How would you formularize this? –The proportionality constant  is called the resistivity and depends on the material used. What is the unit of this constant? ohm-m or  m The values depends on material, purity, temperature, etc –How would you interpret the resistivity? The higher the resistivity the higher the resistance The lower the resistivity the lower the resistance and the higher the conductivity  Silver has a very low resistivity. –So silver is one of the best conductors –The reciprocal of the resistivity is called the conductivity, ,, A l

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Example Speaker wires: Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20m long, what diameter copper wire should you use to keep the resistance less than 0.1  per wire? (b) If the current on each speaker is 4.0A, what is the voltage drop across each wire? The resistivity of copper is From Ohm’s law, V=IR, we obtain From the formula for resistance, we can obtain the area Solve for A Solve for d Table 25.1

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Example Stretching changes resistance: A wire of resistance R is stretched uniformly until it is twice its original length. What happens to its resistance? What is the constant quantity in this problem? What is the volume of a cylinder of length L and radius r? The volume! What happens to A if L increases by a factor two, L’=2L? The cross-sectional area, A, halves. A’=A/2 The original resistance is The new resistance is The resistance of the wire increases by a factor four if the length is doubled (fixed V).

Weds. Feb. 5, PHYS , Dr. Andrew Brandt Do you think the resistivity depends on temperature? –Yes (or at least you should!) Would it increase or decrease with the temperature? –Increase –Why? –Since the atoms are vibrating more rapidly as temperature increases and are arranged in a less orderly fashion. So? They might interfere more with the flow of electrons. If the temperature change is not too large, the resistivity of metals usually increase nearly linearly w/ temperature –  is the temperature coefficient of resistivity –  of some semiconductors can be negative due to the increased number of free electrons. Temperature Dependence of Resistivity