ECE 332 Digital Electronics and Logic Design Lab Lab 6 Concurrent Statements & Adders.

Slides:



Advertisements
Similar presentations
1 VLSI DESIGN USING VHDL Part II A workshop by Dr. Junaid Ahmed Zubairi.
Advertisements

Sequential-Circuit Building Blocks
Introduction to VHDL CSCE 496/896: Embedded Systems Witawas Srisa-an.
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
George Mason University ECE 448 – FPGA and ASIC Design with VHDL Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448.
Simple Testbenches Behavioral Modeling of Combinational Logic
CSET 4650 Field Programmable Logic Devices Dan Solarek VHDL Behavioral & Structural.
ECE 545 Lecture 7 Behavioral Modeling of Sequential-Circuit Building Blocks Mixing Design Styles Modeling of Circuits with a Regular Structure.
VHDL Training ©1995 Cypress Semiconductor 1 Introduction  VHDL is used to:  document circuits  simulate circuits  synthesize design descriptions 
ECE 332 Digital Electronics and Logic Design Lab Lab 5 VHDL Design Styles Testbenches.
Data Flow Modeling of Combinational Logic Simple Testbenches
A.7 Concurrent Assignment Statements Used to assign a value to a signal in an architecture body. Four types of concurrent assignment statements –Simple.
VHDL TUTORIAL Preetha Thulasiraman ECE 223 Winter 2007.
CprE / ComS 583 Reconfigurable Computing Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University Lecture #17 – Introduction.
A VHDL Tutorial ENG2410. ENG241/VHDL Tutorial2 Goals Introduce the students to the following: –VHDL as Hardware description language. –How to describe.
ENG241 Digital Design Week #4 Combinational Logic Design.
L26 – Datapath ALU implementation
1 ECE 545 – Introduction to VHDL ECE 545 Lecture 4 Behavioral & Structural Design Styles.
George Mason University Modeling of Circuits with a Regular Structure Aliases, Attributes, Packages Mixing Design Styles ECE 545 Lecture 7.
VHDL for Combinational Circuits. VHDL We Know Simple assignment statements –f
Introduction to VHDL Spring EENG 2920 Digital Systems Design Introduction VHDL – VHSIC (Very high speed integrated circuit) Hardware Description.
1 ECE 545 – Introduction to VHDL Dataflow Modeling of Combinational Logic Simple Testbenches ECE 656. Lecture 2.
Mixed Style RTL Modeling
ECE 331 – Digital System Design Multiplexers and Demultiplexers (Lecture #13)
(1) Basic Language Concepts © Sudhakar Yalamanchili, Georgia Institute of Technology, 2006.
George Mason University Behavioral Modeling of Sequential-Circuit Building Blocks ECE 545 Lecture 6 Mixing Design Styles.
George Mason University Data Flow Modeling in VHDL ECE 545 Lecture 7.
9/9/2006DSD,USIT,GGSIPU1 Concurrent vs Sequential Combinational vs Sequential logic –Combinational logic is that in which the output of the circuit depends.
CS/EE 3700 : Fundamentals of Digital System Design
04/26/20031 ECE 551: Digital System Design & Synthesis Lecture Set : Introduction to VHDL 12.2: VHDL versus Verilog (Separate File)
VHDL Discussion Subprograms IAY 0600 Digital Systems Design Alexander Sudnitson Tallinn University of Technology 1.
ECE 332 Digital Electronics and Logic Design Lab Lab 5 VHDL Design Styles Testbenches Concurrent Statements & Adders.
ECOM 4311—Digital System Design with VHDL
Data Flow Modeling in VHDL
George Mason University ECE 448 – FPGA and ASIC Design with VHDL VHDL Coding for Synthesis ECE 448 Lecture 12.
George Mason University Behavioral Modeling of Sequential-Circuit Building Blocks ECE 545 Lecture 8.
CDA 4253 FPGA System Design Behavioral modeling of Combinational Circuits Hao Zheng Dept of Comp Sci & Eng USF.
VHDL 표현방식.
George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5.
Data Flow and Behavioral Modeling in VHDL 1 MS EMBEDDED SYSTEMS.
George Mason University ECE 545 – Introduction to VHDL Data Flow & Structural Modeling of Combinational Logic ECE 545 Lecture 2.
CWRU EECS 318 EECS 318 CAD Computer Aided Design LECTURE 6: State machines Instructor: Francis G. Wolff Case Western Reserve University.
Combinational logic circuit
Basic Language Concepts
Dataflow Style Combinational Design with VHDL
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
ECE 545 Lecture 9 Modeling of Circuits with a Regular Structure Aliases, Attributes, Packages.
IAS 0600 Digital Systems Design
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
CHAPTER 10 Introduction to VHDL
ECE 448 Lecture 6 Modeling of Circuits with a Regular Structure Aliases, Constants, Packages Mixing Design Styles ECE 448 – FPGA and ASIC Design with.
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Data Flow Modeling of Combinational Logic
VHDL (VHSIC Hardware Description Language)
ECE 545 Lecture 6 Behavioral Modeling of Sequential-Circuit Building Blocks Mixing Design Styles Modeling of Circuits with a Regular Structure.
Concurrent vs Sequential
Modeling of Circuits with a Regular Structure
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Data Flow Description of Combinational-Circuit Building Blocks
Modeling of Circuits with a Regular Structure
Figure 8.1. The general form of a sequential circuit.
Data Flow Description of Combinational-Circuit Building Blocks
ECE 448 Lecture 4 Modeling of Circuits with a Regular Structure Constants, Aliases, Packages ECE 448 – FPGA and ASIC Design with VHDL.
Modeling of Circuits with a Regular Structure
Modeling of Circuits with Regular Structure
CprE / ComS 583 Reconfigurable Computing
Sequntial-Circuit Building Blocks
(Carry Lookahead Adder)
EEL4712 Digital Design.
Presentation transcript:

ECE 332 Digital Electronics and Logic Design Lab Lab 6 Concurrent Statements & Adders

concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements Dataflow VHDL

target_signal <= value1 when condition1 else value2 when condition2 else... valueN-1 when conditionN-1 else valueN; When - Else.… Value N Value N-1 Condition N-1 Condition 2 Condition 1 Value 2 Value 1 Target Signal … Conditional concurrent signal assignment

Relational operators Logic and relational operators precedence = /= >= not = /= >= and or nand nor xor xnor Highest Lowest Operators

compare a = bc Incorrect … when a = b and c else … equivalent to … when (a = b) and c else … Correct … when a = (b and c) else … Priority of Logic and Relational Operators

Tri-state Buffer – example LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY tri_state IS PORT ( ena: IN STD_LOGIC; input: IN STD_LOGIC_VECTOR(7 downto 0); output: OUT STD_LOGIC_VECTOR (7 DOWNTO 0) ); END tri_state; ARCHITECTURE tri_state_dataflow OF tri_state IS BEGIN output <= input WHEN (ena = '0') ELSE (OTHERS => 'Z'); END tri_state_dataflow; input output ena OTHERS means all bits not directly specified, in this case all the bits.

concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements Dataflow VHDL

with choice_expression select target_signal <= expression1 when choices_1, expression2 when choices_2,... expressionN when choices_N; With –Select-When choices_1 choices_2 choices_N expression1 target_signal choice expression expression2 expressionN Selected concurrent signal assignment

Allowed formats of choices_k WHEN value WHEN value_1 to value_2 WHEN value_1 | value_2 |.... | value N this means boolean “or”

Allowed formats of choice_k - example WITH sel SELECT y <= a WHEN "000", b WHEN "011" to "110", c WHEN "001" | "111", d WHEN OTHERS;

MLU: Block Diagram

MLU: Entity Declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY mlu IS PORT( NEG_A : IN STD_LOGIC; NEG_B : IN STD_LOGIC; NEG_Y : IN STD_LOGIC; A : IN STD_LOGIC; B : IN STD_LOGIC; L1 : IN STD_LOGIC; L0 : IN STD_LOGIC; Y : OUT STD_LOGIC ); END mlu;

MLU: Architecture Declarative Section ARCHITECTURE mlu_dataflow OF mlu IS SIGNAL A1 : STD_LOGIC; SIGNAL B1 : STD_LOGIC; SIGNAL Y1 : STD_LOGIC; SIGNAL MUX_0 : STD_LOGIC; SIGNAL MUX_1 : STD_LOGIC; SIGNAL MUX_2 : STD_LOGIC; SIGNAL MUX_3 : STD_LOGIC; SIGNAL L: STD_LOGIC_VECTOR(1 DOWNTO 0);

MLU - Architecture Body BEGIN A1<= NOT A WHEN (NEG_A='1') ELSE A; B1<= NOT B WHEN (NEG_B='1') ELSE B; Y <= NOT Y1 WHEN (NEG_Y='1') ELSE Y1; MUX_0 <= A1 AND B1; MUX_1 <= A1 OR B1; MUX_2 <= A1 XOR B1; MUX_3 <= A1 XNOR B1; L <= L1 & L0; with (L) select Y1 <= MUX_0 WHEN "00", MUX_1 WHEN "01", MUX_2 WHEN "10", MUX_3 WHEN OTHERS; END mlu_dataflow;

Data-flow VHDL concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements

For Generate Statement For - Generate label: FOR identifier IN range GENERATE BEGIN {Concurrent Statements} END GENERATE [label];

PARITY Example

PARITY: Block Diagram

PARITY: Entity Declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY parity IS PORT( parity_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0); parity_out : OUT STD_LOGIC ); END parity;

PARITY: Block Diagram xor_out(1) xor_out(2) xor_out(3) xor_out(4) xor_out(5) xor_out(6)

PARITY: Architecture ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: std_logic_vector (6 downto 1); BEGIN xor_out(1) <= parity_in(0) XOR parity_in(1); xor_out(2) <= xor_out(1) XOR parity_in(2); xor_out(3) <= xor_out(2) XOR parity_in(3); xor_out(4) <= xor_out(3) XOR parity_in(4); xor_out(5) <= xor_out(4) XOR parity_in(5); xor_out(6) <= xor_out(5) XOR parity_in(6); parity_out <= xor_out(6) XOR parity_in(7); END parity_dataflow;

PARITY: Block Diagram (2) xor_out(1) xor_out(2) xor_out(3) xor_out(4) xor_out(5) xor_out(6) xor_out(7) xor_out(0)

PARITY: Architecture ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0); BEGIN xor_out(0) <= parity_in(0); xor_out(1) <= xor_out(0) XOR parity_in(1); xor_out(2) <= xor_out(1) XOR parity_in(2); xor_out(3) <= xor_out(2) XOR parity_in(3); xor_out(4) <= xor_out(3) XOR parity_in(4); xor_out(5) <= xor_out(4) XOR parity_in(5); xor_out(6) <= xor_out(5) XOR parity_in(6); xor_out(7) <= xor_out(6) XOR parity_in(7); parity_out <= xor_out(7); END parity_dataflow;

PARITY: Architecture (2) ARCHITECTURE parity_dataflow OF parity IS SIGNAL xor_out: STD_LOGIC_VECTOR (7 DOWNTO 0); BEGIN xor_out(0) <= parity_in(0); G2: FOR i IN 1 TO 7 GENERATE xor_out(i) <= xor_out(i-1) XOR parity_in(i); END GENERATE; parity_out <= xor_out(7); END parity_dataflow;

Combinational Logic Synthesis for Beginners

concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) For combinational logic, use only concurrent statements Simple Rules

For circuits composed of: – simple logic operations (logic gates) – simple arithmetic operations (addition, subtraction, multiplication) – shifts/rotations by a constant Use – concurrent signal assignment (  )

Simple Rules For circuits composed of – multiplexers – decoders, encoders – tri-state buffers Use: – conditional concurrent signal assignment (when-else ) – selected concurrent signal assignment (with-select- when)

<= <= when-else with-select <= Left side Right side Internal signals (defined in a given architecture) Ports of the mode - out - inout - buffer (don’t recommend using buffer in this class) Expressions including: Internal signals (defined in a given architecture) Ports of the mode - in - inout - buffer Left versus Right Side

For simple projects put entity.vhd files all in same directory Declare components in main code Xilinx will figure out hierarchy automatically Explicit Component Declaration Tips

METHOD #2: Package component declaration Components declared in package Actual instantiations and port maps always in main code

Packages Instead of declaring all components can declare all components in a PACKAGE, and INCLUDE the package once – This makes the top-level entity code cleaner – It also allows that complete package to be used by another designer A package can contain – Components – Functions, Procedures – Types, Constants

Package – example (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; PACKAGE GatesPkg IS COMPONENT mux2to1 PORT (w0, w1, s : INSTD_LOGIC ; f : OUTSTD_LOGIC ) ; END COMPONENT ; COMPONENT priority PORT (w: IN STD_LOGIC_VECTOR(3 DOWNTO 0) ; y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ; z: OUT STD_LOGIC ) ; END COMPONENT ;

Package – example (2) COMPONENT dec2to4 PORT (w: IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; En : IN STD_LOGIC ; y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ; END COMPONENT ; COMPONENT regn GENERIC ( N : INTEGER := 8 ) ; PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ; Enable, Clock: IN STD_LOGIC ; Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ; END COMPONENT ;

constant ADDAB : std_logic_vector(3 downto 0) := "0000"; constant ADDAM : std_logic_vector(3 downto 0) := "0001"; constant SUBAB : std_logic_vector(3 downto 0) := "0010"; constant SUBAM : std_logic_vector(3 downto 0) := "0011"; constant NOTA : std_logic_vector(3 downto 0) := "0100"; constant NOTB : std_logic_vector(3 downto 0) := "0101"; constant NOTM : std_logic_vector(3 downto 0) := "0110"; constant ANDAB : std_logic_vector(3 downto 0) := "0111"; END GatesPkg; Package – example (3)

Package usage (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; USE work.GatesPkg.all; ENTITY priority_resolver1 IS PORT (r: IN STD_LOGIC_VECTOR(5 DOWNTO 0) ; s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; clk : IN STD_LOGIC; en : IN STD_LOGIC; t : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ; END priority_resolver1; ARCHITECTURE structural OF priority_resolver1 IS SIGNAL p : STD_LOGIC_VECTOR (3 DOWNTO 0) ; SIGNAL q : STD_LOGIC_VECTOR (1 DOWNTO 0) ; SIGNAL z : STD_LOGIC_VECTOR (3 DOWNTO 0) ; SIGNAL ena : STD_LOGIC ;

BEGIN u1: mux2to1 PORT MAP (w0 => r(0), w1 => r(1), s => s(0), f => p(0)); p(1) <= r(2); p(2) <= r(3); u2: mux2to1 PORT MAP (w0 => r(4), w1 => r(5), s => s(1), f => p(3)); u3: priority PORT MAP (w => p, y => q, z => ena); u4: dec2to4 PORT MAP (w => q, En => ena, y => z); u5: regn GENERIC MAP (N => 4) PORT MAP (D => z, Enable => En, Clock => Clk, Q => t ); END structural; Package usage (2)

Explicit Component Declaration versus Package Explicit component declaration is when you declare components in main code – When have only a few component declarations, this is fine – When have many component declarations, use packages for readability Packages also help with portability and sharing of libraries among many users in a company Remember, the actual instantiations always take place in main code – Only the declarations can be in main code or package

39 How to add binary numbers Consider adding two 1-bit binary numbers x and y – 0+0 = 0 – 0+1 = 1 – 1+0 = 1 – 1+1 = 10 Carry is x AND y Sum is x XOR y The circuit to compute this is called a half-adder xyCarrySum

40 xysc = s (sum) c (carry)

41 x y c s (sum) c (carry) A full adder is a circuit that accepts as input thee bits x, y, and c, and produces as output the binary sum cs of a, b, and c.

42 The full adder The full circuitry of the full adder

43 We can use a half-adder and full adders to compute the sum of two Boolean numbers ? 001 Adding bigger binary numbers

44 Adding bigger binary numbers Just chain one half adder and full adders together, e.g., to add x=x 3 x 2 x 1 x 0 and y=y 3 y 2 y 1 y 0 we need: