13.2 Angles of Rotation and Radian Measure

Slides:



Advertisements
Similar presentations
Angles of Rotation and Radian Measure In the last section, we looked at angles that were acute. In this section, we will look at angles of rotation whose.
Advertisements

Warm Up Find the measure of the supplement for each given angle °2. 120° °4. 95° 30°60° 45° 85°
Objectives: Be able to draw an angle in standard position and find the positive and negative rotations. Be able to convert degrees into radians and radians.
Objectives: 1.Be able to draw an angle in standard position and find the positive and negative rotations. 2.Be able to convert degrees into radians and.
What Is A Radian? 1 radian = the arc length of the radius of the circle.
Angles and Arcs in the Unit Circle Radian and Degree Measure In this section, we will study the following topics: Terminology used to describe.
Radian and Degree Measure
Radian and Degree Measure In this section, we will study the following topics: Terminology used to describe angles Degree measure of an angle Radian.
Angles and Radian Measure. 4.1 – Angles and Radian Measure An angle is formed by rotating a ray around its endpoint. The original position of the ray.
Section 4.1 Angles and Radian Measure. The Vocabulary of Angles An angle is formed by two rays that have a common endpoint. One ray is called the initial.
4.1 Radian and Degree Measure. Objective To use degree and radian measure.
I can use both Radians and Degrees to Measure Angles.
Radians and Angles Welcome to Trigonometry!! Starring The Coterminal Angles Supp & Comp Angles The Converter And introducing… Angles Rad Radian Degree.
Section 4.1 Radian and Degree Measure. We will begin our study of precalculus by focusing on the topic of trigonometry Literal meaning of trigonometry.
Section 4.1.  Trigonometry: the measurement of angles  Standard Position: Angles whose initial side is on the positive x-axis 90 º terminal 180 º 0º.
TUC-1 Measurements of Angles “Things I’ve Got to Remember from the Last Two Years”
Radian and Degree Measure Objectives: Describe Angles Use Radian and Degree measures.
Warm - up.
Unit 1, Lesson 1 Angles and their Measures. What is an angle? Two rays with the same Endpoint.
Trigonometric Functions
6.1: Angles and their measure January 5, Objectives Learn basic concepts about angles Apply degree measure to problems Apply radian measure to problems.
Chapter 13: Trigonometric and Circular Functions Section 13-2: Measurement of Arcs and Rotations.
A3 5.1a & b Starting the Unit Circle! a)HW: p EOO b)HW: p EOE.
Angles.
AAT-A 4/25/14 Obj: SWBAT convert from degrees to radians and vice versa. Agenda Bell Ringer: Inquiry: Angle measure HW Requests: Comments on ACT Turn in.
Introduction to Trigonometry Angles and Radians (MA3A2): Define an understand angles measured in degrees and radians.
1 Section T1- Angles and Their Measure In this section, we will study the following topics: Terminology used to describe angles Degree measure of an angle.
Quiz 1) Fill in the sides lengths for the following triangle (and label them hyp, opp, adj): 30º 2) Find the compliment, supplement, and 2 coterminal angles.
Welcome Back to Precalculus
Chapter 4 Trigonometric Functions. Angles Trigonometry means measurement of triangles. In Trigonometry, an angle often represents a rotation about a point.
Radian and Degree Measure. Radian Measure A radian is the measure of a central angle that intercepts an arc length equal to the radius of the circle Radians.
Angles and Their Measure Objective: To define the measure of an angle and to relate radians and degrees.
More Trig – Angles of Rotation Learning Objective: To find coterminal and reference angles and the trig function values of angles in standard position.
4.1 Radian and Degree Measure Trigonometry- from the Greek “measurement of triangles” Deals with relationships among sides and angles of triangles and.
Radian Measure That was easy
Radians and Angles. Angle-formed by rotating a ray about its endpoint (vertex) Initial Side Starting position Terminal Side Ending position Standard Position.
Radian Angle Measures 1 radian = the angle needed for 1 radius of arc length on the circle still measures the amount of rotation from the initial side.
1.1 Trigonometry.
Angle Measures in Degrees & Radians Trigonometry 1.0 Students understand the notation of angle and how to measure it, in both degrees and radians. They.
Vocabulary Origin & Quadrants Vertex Right, Acute, & Obtuse Complementary & Supplementary Central & Inscribed Angles Arc.
Angles and their Measures Essential question – What is the vocabulary we will need for trigonometry?
 Think back to geometry and write down everything you remember about angles.
Section 4.1.  Trigonometry: the measurement of angles  Standard Position: Angles whose initial side is on the positive x-axis 90 º terminal 180 º 0º.
Holt McDougal Algebra Angles of Rotation Warm Up Find the measure of the supplement for each given angle. Think back to Geometry… °2. 120°
Section 4.1. Radian and Degree Measure The angles in Quadrant I are between 0 and 90 degrees. The angles in Quadrant II are between 90 and 180 degrees.
13-2 ANGLES AND THE UNIT CIRCLE FIND ANGLES IN STANDARD POSITION BY USING COORDINATES OF POINTS ON THE UNIT CIRCLE.
Chapter 7: Trigonometric Functions Section 7.1: Measurement of Angles.
Pre-Calculus Honors Pre-Calculus 4.1: Radian and Degree Measure HW: p (14, 22, 32, 36, 42)
1 Copyright © Cengage Learning. All rights reserved. 1 Trigonometry.
Degrees and Radians Pre-Calculus Keeper 11.
Quadrants: Quarters on a coordinate plane
Coterminal Angles.
Radian and Degree Measure
Radian and Degree Measure
6.1 Radian and Degree Measure
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
17-1 Angles of Rotation and Radian Measure
Lesson _______ Section 4
Radian and Degree Measure
6.1 Radian and Degree Measure
Angles and Angle Measure
Angles and Their Measures
Angles and Their Measures
Section T1- Angles and Their Measure
Angles and Radian Measure
13.2A General Angles Alg. II.
Warm-up: Determine the circumference of the following circles in terms of π. HW: p (5 – 10 , , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73)
Copyright © Cengage Learning. All rights reserved.
Mrs. Volynskaya Pre-Calculus 4.1 Radian and Degree Measure
Presentation transcript:

13.2 Angles of Rotation and Radian Measure ©2002 by R. Villar All Rights Reserved

Angles of Rotation and Radian Measure In the last section, we looked at angles that were acute. In this section, we will look at angles of rotation whose measure can be any real number. An angle of rotation is formed by two rays with a common endpoint (called the vertex). y terminal side One ray is called the initial side. The other ray is called the terminal side. x vertex initial side The measure of the angle is determined by the amount and direction of rotation from the initial side to the terminal side. The angle measure is positive if the rotation is counterclockwise, and negative if the rotation is clockwise. A full revolution (counterclockwise) corresponds to 360º.

510º and 150º are called coterminal (their terminal sides coincide). Example: Draw an angle with the given measure in standard position. Then determine in which quadrant the terminal side lies. A. 210º b. –45º c. 510º 150º 210º –45º 510º Terminal side is in Quadrant III Terminal side is in Quadrant IV Terminal side is in Quadrant II Use the fact that 510º = 360º + 150º. So the terminal side makes 1 complete revolution and continues another 150º. 510º and 150º are called coterminal (their terminal sides coincide). An angle coterminal with a given angle can be found by adding or subtracting multiples of 360º.

You can also measure angles in radians. One radian is the measure of an angle in standard position whose terminal side intercepts an arc of length r. r r one radian Since the circumference of a circle is 2πr, there are 2π radians in a full circle. Degree measure and radian measure are therefore related by the following: 360º = 2π radians Conversion Between Degrees and Radians • To rewrite a degree measure in radians, multiply by π radians 180º • To rewrite a radian measure in degrees, multiply by 180º π radians

Examples: Rewrite each in radians a. 240º b. –90º c. 135º 240º = 240º • π 180º –90º = –90º • π 180º 135º = 135º • π 180º 3 4 = –π 2 = 3π 4 = 4π 3 240º = 4π radians 3 135º = 3π radians 4 –90º = –π radians 2

Examples: Rewrite each in degrees a. 5π b. 16π 8 5 8 5 5π = 5π • 180º 8 8 π 16π = 16π • 180º 5 5 π = 112.5º = 576º Two positive angles are complementary if the sum of their measures is π/2 radians (which is 90º) Two positive angles are supplementary if the sum of their measures is π radians (which is 180º). Example: Find the complement of = π 8 The complement is π – π 2 8 = 4π – π 8 8 = 3π 8 Example: Find the supplement of = 3π 5 The supplement is π – 3π 5 = 5π – 3π 5 5 = 2π 5