F. GattiTAUP2007, Sendai, 14.9.07 MARE an experiment for the calorimetric search of m  with sub eV sensitivity F.Gatti On the behalf of the Collaboration.

Slides:



Advertisements
Similar presentations
COBRA A new Approach to -Decay UK HEP Forum, Abingdon, May 11 th, 2003 Daniel Muenstermann University of Dortmund COBRA.
Advertisements

Penning-Trap Mass Spectrometry for Neutrino Physics
Embedding radioactive materials into low-temperature microcalorimeters Some preliminary ideas and results Michael W. Rabin Los Alamos National Laboratory.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
April-June )Oscillations: 2)Kinematics in weak decays: 3) 0 double beta decay: ?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
Present and future activities of the Garching group (E15)
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
Proportional Light in a Dual Phase Xenon Chamber
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
Nitride Materials and Devices Project
High-resolution X-ray spectroscopy with microcalorimeters L. Piro Some key scientific drivers: –GRB engine and progenitors: X-ray lines and absorption.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
Rome, January 17th,2006 Flavio Gatti WHIM and Mission Opportunities TES microcalorimeters in the European context Flavio Gatti University and INFN, Genoa.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
1 Workshop on X-ray Mission Architectural Concepts Linthicum, MD December 14-15, 2011 Enabling Technologies for the High-Resolution Imaging Spectrometer.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
Large Area Microcalorimeters of the Diffuse X-ray Background Sarah Bank Towson University August 5, 2004.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.
Baseline Optimization Studies D. Reyna Argonne National Lab.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
PAUL SCHERRER INSTITUT M. Furlan I. Jerjen E. Kirk Ph. Lerch A. Zehnder Cryogenic Detectors Development at PSI.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
Paris - 14/11/20051 MIBETA 2 Semiconductor microbolometers MIBETA 2 Semiconductor microbolometers for a direct neutrino mass search Alessandro.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Searches on neutrino physics with cryogenic detectors Ettore Fiorini, Columbia, May 16, 2008 The birth of the neutrino.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
DESPEC A Algora IFIC (Valencia) for the Ge array working group.
XEUS Cryogenic Instrument October 2004 Cryogenic X-ray sensor development in US, Europe and Japan Micro-calorimeters Doped - thermistors Astro-E2.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Laboratory Astrophysics using an Engineering Model XRS Microcalorimeter Array NASA/GSFCLLNL. F. Scott PorterPeter Beiersdorfer Keith GendreauGreg Brown.
Tracking Background GRETINA Software Working Group Meeting September 21-22, 2012, NSCL MSU I-Yang Lee Lawrence Berkeley National Laboratory.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
1 MARE: Status and Perspectives Flavio Gatti University and INFN of Genoa on behalf of the MARE Collaboration NUMASS2010 INT Seattle, Feb. 9, 2010.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
1/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE Microcalorimenter.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Low Mass WIMP Search with the CDMS Low Ionization Threshold Experiment Wolfgang Rau Queen’s University Kingston.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
First results of a novel silicon drift detector array designed for low energy X-ray fluorescence spectroscopy Alexandre Rachevski* a, Mahdi Ahangarianabhari.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Cryogenic Particle Detectors in Rare event Searches
SoLid: Recent Results and Future Prospects
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Direct Measurements Working Group
Renzo F. Parodi INFN-Genova
MARE Microcalorimeter Arrays for a Rhenium Experiment
Davide Franco for the Borexino Collaboration Milano University & INFN
Detecting dark matter through line emission
MARE (microcalorimeter array for a rhenium experiment)
If signal is seen by Katrin
Presentation transcript:

F. GattiTAUP2007, Sendai, MARE an experiment for the calorimetric search of m  with sub eV sensitivity F.Gatti On the behalf of the Collaboration University and INFN of Genoa TAUP, Sendai, Sep. 14th 07

F GattiTAUP 2007, Sendai, MARE: Microcalorimeter Arrays for a Rhenium Experiment Proposal of a direct measurement of neutrino mass (MARE) with sub eV sensitivity. MARE want to exploit the true calorimetric method in conjunction with the eV energy resolution of the cryogenic detectors. MARE want to achieve a model independent measurement MARE is foreseen to develop the research program trough different phases: MARE I: R&D and test experiment with eV sensitivity MARE II: fixing the technology and measurement in the sub eV ( ~0.1 eV) range.

F GattiTAUP 2007, Sendai, MARE: Microcalorimeter Arrays for a Rhenium Experiment Università di Genova and INFN Genova,Italy Goddard Space Flight Center, NASA, Maryland, USA GSI, Darmstadt, Germany Kirkhhof-Institute Physik, Universität Heidelberg, Germany Università dell'Insubria,Italy Univ. Milano-Bicocca and INFN Milano-Bicocca, Italy NIST, Boulder, Colorado, USA ITC-irst, Trento and INFN Padova,Italy PTB, Berlin, Germany University of Maryland, Maryland, USA University of Miami, Florida, USA University of Florida, Gainesville, Florida, USA Università Roma “L a Sapienza” and INFN Roma I, Italy SISSA, Trieste, Italy University of Wisconsin, Madison, Wisconsin, USA

F GattiTAUP 2007, Sendai, Calorimetric beta spectroscopy The source is embedded in the detector  Advantages : Measurement of whole energy of the decay E i =  i +  i  dN(  ) = A  i w i  i     d   no model dependent corrections for atomic and molecular final states.  no correction for nuclear recoil energy and for electron energy losses. Disadvantages : Beta Source inside the detector  all spectrum must be acquired: but interesting area proportional to only  m c 2  E     Re 187 : lowest Q ~ 2.5 keV.  Re 187 :  m c 2  E    ~1/400 of H 3  dN/A  Re-187 Os  ß i,

F GattiTAUP 2007, Sendai, An exemple of ¨rhenium microcalorimeter¨ Absorber Re single crystal (99.99% purity) typical dim. 300x300x300 μm surfaces cleaned to optical level annealed at 1300ºC in UHV 63% of 187- Re Thermistor Ir-Au TES on Si Electrical & Heat link Al -1% Si wires 15 μm diam., 1mm length Thermal contact High purity epoxy

F GattiTAUP 2007, Sendai, How the detector works TES R vs T MnK  1,2 energy spectrum

F GattiTAUP 2007, Sendai, Short History In 1985 the use of Re in cryogenic detectors has been proposed by S.Vitale (Genoa) In 92: first calorimetric observation of the 187-Re beta decay 96-99: achieved performance for execution of a first log run eV fwhm 30 eV fwhm

F GattiTAUP 2007, Sendai, Other type of

F GattiTAUP 2007, Sendai,

F GattiTAUP 2007, Sendai, known sources of systematics The absorber modulates the E endpoint : E endpoint = (Q-m e ) – (e  -E Fermi )-  B lattice Atomic long term metastable excited states: <7x10-5 Absorber thermal efficiency: in superconducting Re: ~ 1 down to 90 mK detector response function (energy dependence, shape,...): material dependent, good absorber show gaussian like funct. and approx flat energy dependence condensed matter effects: BEFS observed in Re and AgReO4  improve data and modeling 187Re decay spectral shape: improve F(Z,E) and S(E) energy dependent background: low energy emission in the surrounding materials and radioactivity to be pile-up and rejection efficiency investigation with MC methods other analysis artifacts under investigation with MC methods energy surface escape: < 10-4

F GattiTAUP 2007, Sendai, Sensitivity: analytic formula vs MC MARE I MARE II

F GattiTAUP 2007, Sendai,

F GattiTAUP 2007, Sendai,

F GattiTAUP 2007, Sendai,

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies Mo/Au TES at GFSC/NASA Electron-beam deposited Tc ~ 0.1 K Noise-mitigating normal-metal stripes Absorbers joined to TES in micro- fabrication “Mushroom” shaped to cover the gaps Emphasis on absorbers needed for Constellation-X reference design 0.25 mm pitch (TES is 0.13 mm wide) 92% fill factor 95% QE at 6 keV Bi Cu nitride

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies GSFC/NASA Group

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies Study of the optimal detector concept (Genoa Group) Improve risetime  direct contact Absorber-TES Improve resolution  minimization of not useful materials Provide a design fully compatible with usual planar lithography tech.  large scale integration Re SiO TES Suspended SiN menbrane Re TES Metal contact Re Genoa Group

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies M T 'Curie' KαKα Trigger level Characterization with 55 Fe-Source: energy resolution  E FWHM = 2.7 eV resolving power 2200 Kα1Kα1 Kα2Kα2 non-linearity at 6keV: < 0.8% Heidelberg Group

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies NIST

F GattiTAUP 2007, Sendai, MARE II: Detector and read-out technologies sciencepixelsMUXInstitute Funded Experiments ACT CMB/SZ3000 TDM (NIST/UBC) APEX-SZ CMB/SZ330 FDM (Berkeley) CLOVER CMB-Pol 1500 TDM (NIST/UBC) EBEX CMB-Pol 1200 FDM (Berkeley) LABOCA Sub-mm 288 TDM (Jena/MPI) SAFIRE/SOFIA Sub-mm 1000 TDM (NIST/GSFC) SCUBA-2 Sub-mm TDM (NIST/UBC) SPT CMB/SZ 1000 FDM (Berkeley) Future Experiments PolarBeaR CMB-Pol 1200 FDM (Berkeley) MKID-cam/CSO Sub-mm 1600 MKID (JPL/CIT) 6m Russian Tele (RAS) Sub-mm128 FDM (RAS) SPIDER CMB-Pol2000 TDM (NIST/UBC) Constellation-X X-ray1000 TDM (NIST/GSFC) XEUS X-ray1000 FDM (SRON/VTT) NeXT X-rayTBD FDM (ISAS) EURECAX-ray964FDM(SRON/ISAS) MARE II -mass 50000FDM(INFN)

F GattiTAUP 2007, Sendai, A possible sensitivity scenario for MARE II

F GattiTAUP 2007, Sendai, Eletron Capture Decay provides another tool for calorimetric mass measurements 163Ho is the most suited, The end point of the highest capture line is sensitive to mass ( A De Rujula, 1983). Implanted 163Ho is a source with tunable activity independent form the absorber masses Minimization of the absorber mass  minimum required by the full absorption of the energy cascade  resolution less dependent from the activity Different systematics than 187 Re  increase confidence level A further possibility: not only 187Re

F GattiTAUP 2007, Sendai,

F GattiTAUP 2007, Sendai, Concluding remarks vMass07: “if Katrin don’t see signal … we need to go at 5x10-2 eV!” vMass07:“ cosmology can set new constraints on the mass in the ten year … but a laboratory measurement is needed, as in the case of neutrino oscillation at the reactor (Kamland) respect to the astrophysical evidence.” Thermal detectors can achieve resolution of the 1 eV in a short time and can be used for a very high statistics experiment  expected sensitivity in the KATRIN range or better, in future. EC decay is considered as second tool The overall technology is not fully tested for application to beta decay  an huge effort of a large community is needed  new collaborators are welcome