2 3 where in the body ? where in the cell ?

Slides:



Advertisements
Similar presentations
Species-Neutral vs. Multi-Species Ontologies Barry Smith.
Advertisements

On the Future of the NeuroBehavior Ontology and Its Relation to the Mental Functioning Ontology Barry Smith
1 The Future of Biomedical Informatics Barry Smith University at Buffalo
Goal and Status of the OBO Foundry Barry Smith. 2 Semantic Web, Moby, wikis, crowd sourcing, NLP, etc.  let a million flowers (and weeds) bloom  to.
The Environment Ontology Barry Smith 1.
1 Introduction to Biomedical Ontology Barry Smith University at Buffalo
1 Doing Ontology Over Images Barry Smith. What ontologies are for.
The Future of Health Information Barry Smith Ontology Research Group Center of Excellence in Bioinformatics and Life Sciences University at Buffalo ontology.buffalo.edu/smith.
1 The OBO Foundry Towards Gold Standard Terminology Resources in the Biomedical Domain Thomas Bittner (based on a presentation by Barry Smith)
Introduction to Ontologies for Environmental Biology Barry Smith
1 Intelligence Ontology: A Strategy for the Future Barry Smith University at Buffalo
1 How Ontologies Create Research Communities Barry Smith
1 Workshop 7.00 Welcoming Remarks 7.15 Barry Smith (Buffalo, NY) 7.40 Lindsay Cowell (Duke University, NC) 8.05 Nigam Shah (Stanford University, CA) 8.30.
1 The OBO Foundry Barry Smith University at Buffalo
1 Introduction to (Geo)Ontology Barry Smith
1 How Ontologies Create Research Communities Barry Smith University at Buffalo
What is an ontology and Why should you care? Barry Smith with thanks to Jane Lomax, Gene Ontology Consortium 1.
1 The OBO Foundry 2 A prospective standard designed to guarantee interoperability of ontologies from the very start (contrast.
The Problem of Reusability of Biomedical Data OBO Foundry & HL7 RIM Barry Smith.
What is an ontology and Why should you care? Barry Smith with thanks to Jane Lomax, Gene Ontology Consortium 1.
Underlying Ontologies for Biomedical work - The Relation Ontology (RO) and Basic Formal Ontology (BFO) Thomas Bittner SUNY Buffalo
1 Logical Tools and Theories in Contemporary Bioinformatics Barry Smith
1 Introduction to Ontology Barry Smith
Room for Lunch: Arlington Room Room for Evening Reception: Grand Prairie Room.
OBO-Foundry. OBO was conceived and announced in in october 2001 Michael Ashburner and Suzanna Lewis with acknowledgements of others in the GO.
1 Ontologie als konkretisierte Darstellung der Wirklichkeit Barry Smith.
CTO - Clinical Trials/Research in the Ontology of Biomedical Investigation Richard H. Scheuermann U.T. Southwestern Medical Center.
The RNA Ontology RNAO Colin Batchelor Neocles Leontis May 2009 Eckart, Colin and Jane In Cambridge.
1 BIOLOGICAL DOMAIN ONTOLOGIES & BASIC FORMAL ONTOLOGY Barry Smith.
1 The OBO Foundry Barry Smith Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo IFOMIS, Saarland University
CoE Ontology Research Group (ORG) Barry Smith Center of Excellence in Bioinformatics and Life Sciences Ontology Research Group Department of Philosophy.
How to Organize the World of Ontologies Barry Smith 1.
New York State Center of Excellence in Bioinformatics & Life Sciences Biomedical Ontology in Buffalo Part I: The Gene Ontology Barry Smith and Werner Ceusters.
1 What an Ontology is For Barry Smith University at Buffalo Common Anatomy Reference Ontology Workshop.
Introduction to Ontologies for Environmental Biology Barry Smith
The OBO Foundry Chris Mungall Lawrence Berkeley Laboratory NCBO GO Consortium May 2007.
1 How Ontologies Create Research Communities Barry Smith
1 The Canonical Life Barry Smith
1 Ontology (Science) Barry Smith University at Buffalo
Building the Ontology Landscape for Cancer Big Data Research Barry Smith May 12, 2015.
Limning the CTS Ontology Landscape Barry Smith 1.
Ontology of Sensors: Some Examples from Biology
Ontological realism as a strategy for integrating ontologies Ontology Summit February 7, 2013 Barry Smith 1.
Intelligence Ontology A Strategy for the Future Barry Smith University at Buffalo
1 How Ontologies Create Research Communities Barry Smith University at Buffalo
Building Ontologies with Basic Formal Ontology Barry Smith May 27, 2015.
1 The Canonical Life Barry Smith
Alan Ruttenberg PONS R&D Task force Alan Ruttenberg Science Commons.
1 Ontology (Science) vs. Ontology (Engineering) Barry Smith University at Buffalo
Introduction to Biomedical Ontology for Imaging Informatics Barry Smith, PhD, FACMI University at Buffalo May 11, 2015.
Biomedical Ontologies: The State of the Art Barry Smith and Werner Ceusters MIE, Sarajevo, August 30 1.
1 Introduction to Bio-Ontologies Barry Smith
How to integrate data Barry Smith. The problem: many, many silos DoD spends more than $6B annually developing a portfolio of more than 2,000 business.
About ontologies Melissa Haendel. And who am I that I am giving you this talk? Melissa Haendel Anatomist, developmental neuroscientist, molecular biologist,
Ontology and the Semantic Web Barry Smith August 26,
What is an ontology and Why should you care? Barry Smith 1.
Need for common standard upper ontology
Introduction to Biomedical Ontology for Imaging Informatics Barry Smith, PhD, FACMI University at Buffalo May 11, 2015.
1 An Introduction to Ontology for Scientists Barry Smith University at Buffalo
1 Ontology (Science) vs. Ontology (Engineering) Barry Smith University at Buffalo
OBO Foundry Principles BFO RO Barry Smith 1. OBO Foundry Principles  open  common formal language (OBO Format, OWL DL, CL)  commitment to collaboration.
Basic Formal Ontology Barry Smith August 26, 2013.
Building Ontologies with Basic Formal Ontology Barry Smith May 27, 2015.
1 Using Ontologies for Annotation of Genomic Data Barry Smith University at Buffalo
What is an ontology and Why should you care? Barry Smith 1.
What is an ontology and Why should you care?
An Introduction to Ontology for Evolutionary Biology
Intelligence Ontology: A Strategy for the Future
Why do we need upper ontologies? What are their purported benefits?
OBO Foundry Update: April 2010
Presentation transcript:

2

3 where in the body ? where in the cell ?

where in the body ? where in the cell ? what kind of organism ?

where in the body ? where in the cell ? what kind of organism ? what kind of disease process ?

to yield: distributed accessibility of the data to humans reasoning with the data cumulation for purposes of research incrementality and evolvability integration with clinical data Creating broad-coverage semantic annotation systems for biomedicine

7

8

9 Gene Ontology a controlled structured vocabulary for annotation of gene product data

The OBO Foundry Idea MouseEcotope GlyProt DiabetInGene GluChem sphingolipid transporter activity

The OBO Foundry Idea MouseEcotope GlyProt DiabetInGene GluChem Holliday junction helicase complex

Sjöblöm et al. analyzed 13,023 genes in 11 breast and 11 colorectal cancers identified189 as being mutated at significant frequency and thus as providing targets for diagnostic and therapeutic intervention. correlations between functional information captured by GO for given gene product types and the expression patterns detected experimentally in selected instances of these types can help to elucidate underlying pathologies Sjöblöm T, et al. Science Oct 13;314(5797):

13 Five bangs for your GO buck 1.based in biological science 2.incremental approach (low hanging fruit) 3.cross-species data comparability (human, mouse, yeast, fly...) 4.cross-granularity data integration (molecule, cell, organ, organism) 5.cumulation of scientific knowledge in algorithmically tractable form which links people to software

14 what cellular component? what molecular function? what biological process?

a family of interoperable biomedical reference ontologies built around the Gene Ontology at its core and using the same principles a modular annotation catalogue of English phrases each module created by experts from the corresponding scientific community The OBO Foundry

RELATION TO TIME GRANULARITY CONTINUANTOCCURRENT INDEPENDENTDEPENDENT ORGAN AND ORGANISM Organism (NCBI Taxonomy) Anatomical Entity (FMA, CARO) Organ Function (FMP, CPRO) Phenotypic Quality (PaTO) Biological Process (GO) CELL AND CELLULAR COMPONENT Cell (CL) Cellular Component (FMA, GO) Cellular Function (GO) MOLECULE Molecule (ChEBI, SO, RnaO, PrO) Molecular Function (GO) Molecular Process (GO) The OBO Foundry building out from the original GO

Karen Eilbecksong.sf.net properties and features of nucleic sequences Sequence Ontology (SO) RNA Ontology Consortium(under development) three-dimensional RNA structures RNA Ontology (RnaO) Barry Smith, Chris Mungallobo.sf.net/relationshiprelations Relation Ontology (RO) Protein Ontology Consortium(under development) protein types and modifications Protein Ontology (PrO) Michael Ashburner, Suzanna Lewis, Georgios Gkoutos obo.sourceforge.net/cgi -bin/ detail.cgi? attribute_and_value qualities of biomedical entities Phenotypic Quality Ontology (PaTO) Gene Ontology Consortiumwww.geneontology.org cellular components, molecular functions, biological processes Gene Ontology (GO) FuGO Working Groupfugo.sf.net design, protocol, data instrumentation, and analysis Functional Genomics Investigation Ontology (FuGO) JLV Mejino Jr., Cornelius Rosse fma.biostr.washington. edu structure of the human body Foundational Model of Anatomy (FMA) Melissa Haendel, Terry Hayamizu, Cornelius Rosse, David Sutherland, (under development) anatomical structures in human and model organisms Common Anatomy Refer- ence Ontology (CARO) Paula Dematos, Rafael Alcantara ebi.ac.uk/chebimolecular entities Chemical Entities of Bio- logical Interest (ChEBI) Jonathan Bard, Michael Ashburner, Oliver Hofman obo.sourceforge.net/cgi- bin/detail.cgi?cell cell types from prokaryotes to mammals Cell Ontology (CL) CustodiansURLScopeOntology

Ontologies being built to satisfy Foundry principles ab initio Clinical Trial Ontology (CIO) Common Anatomy Reference Ontology (CARO, DB1 & DB2) Mosquito Anatomy Ontology (MAO) Ontology for Biomedical Investigations (OBI) Phenotypic Quality Ontology (PATO, DB1 & DB2) Protein Ontology (PRO) Relation Ontology (RO) RNA Ontology (RnaO)

19 Draft Ontology for Multiple Sclerosis

Entry point for creation of web- accessible biomedical data GO initially low-tech to encourage users Simple (web-service-based) tools created to support the work of biologists in creating annotations (data entry) OBO  OWL DL converters now making OBO Foundry annotated data immediately accessible to Semantic Web data integration projects

GO allows distributed web-based collaboration the methodology gradually being evolved as service -based architecture by US National Center for Biomedical Ontology ( companies vs. cross-border collaboration

22 what cellular component? what molecular function? what biological process?

compare: legends for maps

compare: legends for maps common legends allow (cross-border) integration

25 legends for chemistry diagrams

26 MIAKT system legends for images

27

ontologies as legends for data