Collaborators within DK-Planck community Lung-Yih Chiang (NBI) Andrei Doroshkevich (TAC,ASC FIRAN) Per Rex Christensen (NBI) Igor D. Novikov ( NBI) Pavel.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

Weak Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge
Institute of Astronomy, Cambridge
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
EOR Detection Strategies Somnath Bharadwaj IIT Kharagpur.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
Cosmological Structure Formation A Short Course
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Cosmology After WMAP David Spergel Cambridge December 17, 2007.
The Cosmic Microwave Background. Maxima DASI WMAP.
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
CMB as a physics laboratory
Patricio Vielva Astrophysics Department (IFCA, Santander) Currently Astrophysics Group (Cavendish Lab., Cambridge) Wiaux, Vielva, Martínez-González.
University of Århus lunch talk, May 11, 2007 Large angle CMB anomalies and local structures Syksy Räsänen CERN Syksy Räsänen CERN.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
Introduction to Power Spectrum Estimation Lloyd Knox (UC Davis) CCAPP, 23 June 2010.
What have we learnt from WMAP? Robert Crittenden Institute of Cosmology and Gravitation, Portsmouth, UK.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Galaxy bias with Gaussian/non- Gaussian initial condition: a pedagogical introduction Donghui Jeong Texas Cosmology Center The University of Texas at Austin.
Early times CMB.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Cosmology : Cosmic Microwave Background & Large scale structure & Large scale structure Cosmology : Cosmic Microwave Background & Large scale structure.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
Anomalies of low multipoles of WMAP
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters Dick Bond.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004.
The Pursuit of primordial non-Gaussianity in the galaxy bispectrum and galaxy-galaxy, galaxy CMB weak lensing Donghui Jeong Texas Cosmology Center and.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Eiichiro Komatsu University of Texas, Austin June 8, 2007 Estimators For Extracting (Primordial) Non-Gaussianity.
Unesco July 2005Francis Bernardeau SPhT Saclay1 Models of inflation with primordial non-Gaussianities Francis Bernardeau SPhT Saclay Collaboration with.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
WMAP Cosmology Courtesy of NASA/WMAP Science Team map.gsfc.nasa.gov.
CMB, lensing, and non-Gaussianities
Large Scale Anisotropy in the Universe Pankaj Jain I.I.T. Kanpur.
Szapudi´s talk – False Detection Rate Simultaneous hypothesis testing - Setting the statistical significance Detections of Non-Gaussianity in CMB observations.
Dominic Galliano Supervisors: Rob Crittenden & Kazuya Koyama UK Cosmo, Tuesday 13 September 2011.
Cheng Zhao Supervisor: Charling Tao
Detecting the CMB Polarization Ziang Yan. How do we know about the universe by studying CMB?
PLANCK TEAM of the DISCOVERY Center. The most mysterious problems.
Cosmic saga encrypted in the Cosmic Microwave Background
Testing Primordial non-Gaussianities in CMB Anisotropies
The Cosmic Microwave Background and the WMAP satellite results
Physics Seminar Measurement of the Cosmic Microwave Background anisotropies and polarization with Planck Assoc. Prof. Guillaume Patanchon Astroparticle.
Big Bang.
Cosmology from Large Scale Structure Surveys
Precision cosmology, status and perspectives
Complexity in cosmic structures
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Measurements of Cosmological Parameters
Non-Gaussianity at low and high multipoles from WMAP data
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
Presentation transcript:

Collaborators within DK-Planck community Lung-Yih Chiang (NBI) Andrei Doroshkevich (TAC,ASC FIRAN) Per Rex Christensen (NBI) Igor D. Novikov ( NBI) Pavel D. Naselsky ( NBI) Oleg V. Verhodanov (TAC,SAO RAN) H..U Norgaard -Nielsen, DSRC

Non-Gaussianity of the CMB sky P.Naselsky NBI, the PLANCK scientist Why the issue of Non-Gaussianity is important for development of cosmology ?

“BIG BANG” Ω ≈1 n≈0.97 Gaussianity!! P(δ)dδ~exp(-δ ²/2σ²)dδ Non-linear development of the quantum fluctuation Non-Gaussianity!!

Transition from primordial (Gaussian) fluctuations to non-linear structures (galaxies, clusters and LSS ) change statistical properties of the adiabatic perturbations.

Picture of the Quantum fluctuations from Inflation in radio waves

Definition of the power spectra Definition of the power spectra Gaussian or non-Gaussian Gaussian only !

Cosmology before WMAP

The temperature anisotropy and temperature polarization cross power spectrum Precision cosmology !!!

BOOMERANG, MAXIMA-1,CBI,ARCHEOPS,VSA,DASI, BIMA +……. SN1a, 2dF,He,D… CMB Ω h =0.02 ! b 2 WMAP +……. SN1a, 2dF,He, D WHY NOT FOR US ? Cosmologyof Cosmology of the XX century the XX century

Important question is WHY? Dark matter density Dark energy density ≈1/3 1/ π ? (D=3)/(D=10) ? What about Extra dimensions ? Topology ? Baryonic matter density Dark matter density ? Baryosynthesis? Cosmologyof the XXI century Cosmology of the XXI century

Development of Cosmology and High energy physics Dark energy Dark matter Baryonic matter } Φ(x, t)=Ψ(x, t)* exp [iΛ(x, t)] exp [iΛ(x, t)] S.Bonometto et al,2004,2005

Non linear theory of dark energy-dark matter coupling coupling Link between adiabatic and isocurvature perturbations Weak Non-Gaussianity of the CMB Reionization of the cosmic plasma by the first quasars, galaxies, and stars

300 Mpc 3Mpc Reionization

WMAP PLANCK,2007

Two news from the WMAP data analysis team ) Komatsu et al, 2003 (WMAP team ) 2. The CMB signal is non- Gaussian non- Gaussian

WMAP map: Gaussian by WMAP science team with 95% CL  f   f 

, Non-Gaussianity is not a dog!” Ya.B.Zel’dovich Ya.B.Zel’dovich ΔΦΔΦ f*ΔΦΔΦ

The definition of Gaussianity

Methods of detection of Non-Gaussianity in the WMAP sky Image domainMultipoles domain 1.Peak statistics 2. Minkowski functionals 3. Wavelets 4.Curvature distribution 5.Non-uniformity of the power spectra distribution over patches of the sky 6.Skiwness and kurtosis 7. Bispectrum ……………. 1.Phases analysis (trigonometric moments of phases, phase cross-correlations, Pearson’s random walk statistic, 2.Minkowski vectors 3. Cooper's statistic for phases WMAP signal is Non-Gaussian is Non-Gaussian

FOREGROUNS + instrumental noise+ systematic effects

CMB maps derived from the WMAP data ILC l<100 FCM l<512 WFM l<512 ErFM l<512 NOT FOR INVESTIGA- INVESTIGA- TION OF THE CMB !!!?? CMB !!!??

Image analysis for non-Gaussianity test Pixel by pixel

Foregrounds ? FCM-ErFCM ILC-ErFCM ILC-WFM V band l=400

WMAP KP masks

Asymmetry of the CMB power

*South-north asymmetry of the COBE and the WMAP signals. Global anisotropy of the Universe. NEP SEP WHY ?

Non-CMB tools Q-W V-W FCM WFCM FCM-WFCM MV

L<512 NON-CMB L<100 L<30

Alignment of the low multipoles Schwarz et al,2004

Gaussian Random Fields Strict definition of Gaussianity: They possess Fourier modes whose real and imaginary parts are independently distributed and both Gaussian, Weak definition of Gaussianity : random phase hypothesis the Fourier phases are uniformly random between 0 and  (by Central Limit Theorem)

transformed Planck Planck satellite and transformed Planck have the same power spectrum (same |  k | ), they have different “faces” due to different phases: It is phase  k that keep Max’s face, not amplitude |  k | !! Planck satellite Max Planck FT -1 [ ] |  k | exp(i  k ) |k||k|exp(i  k )

Asymmetry of the WMAP phases

Foreground-cleaned map ℓ m

Asymmetry of the WMAP phases L-1,L+1 correlation through m- direction M-1,M correlation through - L direction ILC WTOH TOH NO Evidence of Primordial Magnetic Field ! Naselsky, Verkhodanov, Novikov,Olesen,Chiang,ApJ,2004

Non-Gaussianity of the WMAP. WHY ?

Primordial (Inflation ?) Foregrounds + systematic NON-GAUSSIANITY NEW PHYSICS S= G + NG  f 

Summary Residues of the foregrounds separation Chiang,Naselsky, Verkhodanov and Way,ApJ.Lett2003; Naselsky, Doroshkevich and Verkhodanov,ApJ.Lett,2003; Naselsky, Doroshkevich and Verkhodanov,MNRAS,2004; Park, MNRAS,2004; Eriksen, D.Novikov, Lille,Gorski, ApJ,2004 ; Naselsky, Verkhodanov, Novikov,Olesen,Chiang,ApJ,2004,… 2. Systematic effects Hansen, Vittorio,ApJ.Lett.2004 (+) Vielva et al,MNRAS, 2004 (-) 3. Primordial Bershadskii, Skrinevasan, Phys.Lett.,2003;2004 (magnetic field) Vielva et al,MNRAS, 2004 Hansen, Bandy, Gorski,MNRAS,2004 Wandelt,ApJ.Lett,2004

Non-Gaussianity is not a dog!” Ya.B.Zel’dovich Sorry!