Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘

Slides:



Advertisements
Similar presentations
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Signes, pointeurs et schémas de concepts pour.
Advertisements

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Penser la musique dans la logique fonctorielle.
Ch 4: Difference Measurement. Difference Measurement In Ch 3 we saw the kind of representation you can get with a concatenation operation on an ordered.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science architecture du livre „The Topos of Music“
1.  Detailed Study of groups is a fundamental concept in the study of abstract algebra. To define the notion of groups,we require the concept of binary.
Crossed Systems and HQFT’s
PART 2 Fuzzy sets vs crisp sets
Abstract Some of the so called smallness conditions in algebra as well as in Category Theory, important and interesting for their own and also tightly.
¹ -Calculus Based on: “Model Checking”, E. Clarke and O. Grumberg (ch. 6, 7) “Symbolic Model Checking: 10^20 States and Beyond”, Burch, Clark, et al “Introduction.
Schemas as Toposes Steven Vickers Department of Pure Mathematics Open University Z schemas – specification1st order theories – logic geometric theories.
Finite fields.
Lecture 3 Operations on Sets CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
Relations Chapter 9.
The Relationship between Topology and Logic Dr Christopher Townsend (Open University)
Category Theory By: Ashley Reynolds. HISTORY OF CATEGORY THEORY  In 1942–45, Samuel Eilenberg and Saunders Mac Lane introduced categories, functors,
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Concepts locaux et globaux. Première partie:
Math 3121 Abstract Algebra I Lecture 3 Sections 2-4: Binary Operations, Definition of Group.
Polynomials Algebra Polynomial ideals
Hierarchied Categories Abelian categories, hierarchied abelian categories, graded hierarchied tensor categories Abelian categories, hierarchied abelian.
Scott Closed Set Lattices And Applications 1. Some preliminaries 2. Dcpo-completion 3. Equivalence between CONP and CDL 4. The Hoare power domain 5. Scott.
 Origins in PRESTO, and early computer application developed by Guerino Mazzola.  RUBATO is a universal music software environment developed since 1992.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Models of Tonal Modulation and.
Chapter 9. Chapter Summary Relations and Their Properties Representing Relations Equivalence Relations Partial Orderings.
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Music Theory — Status Quo 2000.
MA5209 Algebraic Topology Wayne Lawton Department of Mathematics National University of Singapore S ,
Chapter 9. Section 9.1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R ⊆ A × B. Example: Let A = { 0, 1,2 } and.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Intégration de la Set Theory américaine (AST)
Notes 9.4 – Sequences and Series. I. Sequences A.) A progression of numbers in a pattern. 1.) FINITE – A set number of terms 2.) INFINITE – Continues.
Computably Enumerable Semigroups, Algebras, and Groups Bakhadyr Khoussainov The University of Auckland New Zealand Research is partially supported by Marsden.
Sets Define sets in 2 ways  Enumeration  Set comprehension (predicate on membership), e.g., {n | n  N   k  k  N  n = 10  k  0  n  50} the set.
The homology groups of a partial monoid action category Ahmet A. Husainov
Language: Set of Strings
Guerino Mazzola U & ETH Zürich Guerino Mazzola U & ETH Zürich
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
March 24, 2006 Fixed Point Theory in Fréchet Space D. P. Dwiggins Systems Support Office of Admissions Department of Mathematical Sciences Analysis Seminar.
Musical Gestures and their Diagrammatic Logic Musical Gestures and their Diagrammatic Logic Guerino Mazzola U & ETH Zürich U & ETH Zürich
Mathematical Preliminaries
Balanced Category Theory Claudio Pisani Calais, June 2008.
Guerino Mazzola U & ETH Zürich U & ETH Zürich Global Networks in Computer Science? Global Networks in Computer.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Performance and Interpretation Performance.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Operators on Vector Fields of Genealogical.
Guerino Mazzola (Fall 2015 © ): Introduction to Music Technology IIISymbolic Reality III.2 (We Nov 16) Denotators I—definition of a universal concept space.
Relations. Important Definitions We covered all of these definitions on the board on Monday, November 7 th. Definition 1 Definition 2 Definition 3 Definition.
The theory behind Functional Programming Functional: based on lambda calculus / combinators, recursion theory, category theory. By contrast with other.
Problem Statement How do we represent relationship between two related elements ?
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Great Theoretical Ideas in Computer Science.
Grammars A grammar is a 4-tuple G = (V, T, P, S) where 1)V is a set of nonterminal symbols (also called variables or syntactic categories) 2)T is a finite.
Guerino Mazzola Roger Fischlin, Stefan Göller: U Zürich Claudio Vaccani, Sylvan Saxer: ETH Zürich The Internet.
Set Theory Concepts Set – A collection of “elements” (objects, members) denoted by upper case letters A, B, etc. elements are lower case brackets are used.
Guerino Mazzola U & ETH Zürich Topos Theory for Musical Networks Topos Theory for Musical Networks.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Towards „Grand Unification“ Of Musiacl Composition,
2004/10/5fuzzy set theory chap03.ppt1 Classical Set Theory.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Manifolds and Stemmata in Musical Time.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions.
Week 8 - Wednesday.  What did we talk about last time?  Relations  Properties of relations  Reflexive  Symmetric  Transitive.
Prepared By Meri Dedania (AITS) Discrete Mathematics by Meri Dedania Assistant Professor MCA department Atmiya Institute of Technology & Science Yogidham.
Chapter 1. Linear equations Review of matrix theory Fields System of linear equations Row-reduced echelon form Invertible matrices.
Set. Outline Universal Set Venn Diagram Operations on Sets.
Relations Chapter 9.
Great Theoretical Ideas in Computer Science
Axioms for a category of spaces
III Symbolic Reality III.2 (We Nov 08) Denotators I—definition of a universal concept space and notations.
Language and Automata Theory
Great Theoretical Ideas in Computer Science
III Symbolic Reality III.2 (Mo Nov 05) Denotators I—definition of a universal concept space and notations.
Finite Fields Rong-Jaye Chen.
Math/CSE 1019N: Discrete Mathematics for Computer Science Winter 2007
ALGEBRA I - SECTION 7-2 (Multiplying Powers With the Same Base)
Presentation transcript:

Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘ Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org

Where we are... What is a topos? The topos of presheaves Functorial local compositions Concept modeling over topoi Contents

Where we are... C Í Ÿ12 (chords) M Í — 2 (motives) Ambient space Ÿ12 = finite -> enumeration, Pólya & de Bruijn —2 = infinite -> ??

Where we are... B K Í B set module B @ 0Ÿ@B K Í 0Ÿ@B A A = Ÿn: sequences (b0,b1,…,bn) A = B: self-addressed tones Need general addresses A

Where we are... B M Í A@B M Í B A@B = eB.Lin(A,B) A = R R@B = eB.Lin(R,B) ª B2

Where we are... Ÿ12 S A@B = eB.Lin(A,B) R = Ÿ, A = Ÿ11, B= Ÿ12 Series: S Î Ÿ11 @ Ÿ12 = e Ÿ12.Lin(Ÿ11, Ÿ12) ª Ÿ12 12

I II III IV V VI VII Where we are...

Where we are... The class nerve cn(K) of global composition is not classifying I IV II VI V III VII 10 15 5 6 2 Where we are...

Where we are... Motivic strip of Zig-Zag (15) 5 6 4 (16) (19) (19) 7 3 8 2 5 3 (15) Where we are... (16) (19) (19) (2) (11) (20) (10) (15)

B = „EH“ ª —2 M Í Ÿ@B E H Where we are... E

Where we are... Have universal construction of a „resolution of KI“ res: ADn* ® KI It is determined only by the KI address A and the nerve n* of the covering atlas I. Where we are... ADn* KI res

Where we are... 0Dn* res KI 6 5 2 3 4 1 a d b c 1 2 3 4 6 5 5 6 3 4 1

„Classified“ Where we are... The category ObLocomA of local objective A-addressed compositions has as objects the couples (K, A@C) of sets K of affine morphisms in A@C and as morphisms f: (K, A@C) ® (L, A@D) set maps f: K ® L which are naturally induced by affine morphism F in C@D The category ObGlocomA of global objective A-addressed compositions has as objects KI coverings of sets K by atlases I of local objective A-addressed compositions with manifold gluing conditions and manifold morphisms ff: KI ® LJ, including and compatible with atlas morphisms f: I ® J Where we are... „Classified“

What is a Topos? Sets cartesian products X x Y Mod@ F: Mod —> Sets presheaves have all these properties Sets cartesian products X x Y disjoint sums X È Y powersets XY characteristic maps c: X —> 2 no „algebra“ What is a Topos? Mod direct products A≈B has „algebra“ no powersets no characteristic maps

What is a Topos? A category E is a topos iff it has terminal object 1 and products A ¥ B has initial object 0 and coproducts A + B has exponentials XY has a subobject classifier 1 ® W What is a Topos? Our examples: 1) E = Sets sets 2) E = Mod@ presheaves over the category Mod of modules

What is a Topos? A ¥ B = cartesian product 1 = {Æ} is terminal: Example: E = Sets A ¥ B = cartesian product B A ¥ B What is a Topos? (a,b) b a A 1 = {Æ} is terminal: There is a unique !:X ® 1: x ~> Æ

What is a Topos? A + B = disjoint union, 0 = Æ A B 0 = Æ is initial: Example: E = Sets A + B = disjoint union, 0 = Æ A + B What is a Topos? A B 0 = Æ is initial: There is a unique !:0 ® X: ? ~> ?

What is a Topos? XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) Example: E = Sets XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) g: Z ® XY ~> g*: Z ¥ Y ® X g*(z,y)=g(z)(y) What is a Topos?

What is a Topos? Example: E = Sets subobject classifier 1 ® W = 2 = {0,1} 1 ® 2: 0 ~> 0 X Y ! c What is a Topos? c(x) = 0 iff x Î X 1 2 Y X Subobjects(Y) ª Hom(Y,W) {0,1}

What is a Topos? Counterexample: E = ModR with R-linear maps There is no subobject classifier here!  0-module X Y c ! What is a Topos? X = Ker(c) Y/X ≈ Im(c)   absurd!

More generally, take the category Mod of modules over any rings, together with (di)affine morphism „A@B“. This is not only not a topos, it has other not very agreable properties: Have no module M+N for the property k  A@M or k  A@N iff k  A@(M+N) Have no module P(M) for the property K  A@M iff K  A@P(M) What is a Topos?

Presheaves @M = presheaf of M Problem: When replacing M by the set A@M, we loose all information about M. Solution: Replace a module M by the system of sets @M: Mod  Sets: A ~> A@M „set of all perspectives of M, as viewed from A“ Presheaves B u A M u@M: A@M  B@M 1A@M = 1A@M u.v:C  B  A u.v@M = v@M.u@M g g.u @M = presheaf of M

Presheaves Mod@ = category of presheaves on Mod Presheaves: F: Mod  Sets: A ~> F(A) A@F Together with the transition maps u@F : A@F  B@F for u:B  A with the properties Presheaves 1A@F = 1A@F u.v: C  B  A u.v@F = v@F.u@F Mod@ = category of presheaves on Mod

Presheaves Example 1 S = set, @S: Mod  Sets: A ~> A@S = S Transition maps, u: B  A, u@S = 1S : S  S Presheaves „small topos within a large topos“ Sets @Sets Mod@

Presheaves Example 2 M = module, 2@M: Mod  Sets: A ~> A@ 2@M = 2A@M Transition maps, u: B  A, u@2@M : A@2@M  B@2@M u@M: A@M  B@M K  A@M ~> u@M(K)  B@M Presheaves K u@M(K)

Presheaves Example 2* F = presheaf, 2F: Mod  Sets: A ~> A@2F = 2A@F Transition maps, u: B  A, u@2F : A@2F  B@2F u@F: A@F  B@F K  A@F ~> u@F(K)  B@F Presheaves K u@F(K)

Presheaves Example 3 M, N = modules, @M+@N: Mod  Sets: A ~> A@M + A@N Transition maps, u: B  A Presheaves B@M A@M A@N B@N

Presheaves Example 3* F, G = presheaves, F+G: Mod  Sets: A ~> A@F + A@G Transition maps, u: B  A Presheaves B@F A@F A@G B@G

Presheaves Why are presheaves a solution? Yoneda Lemma The functorial map @: Mod ® Mod@ is fully faithfull. M ~> @M M@N ≈ Hom(@M,@N) M ≈ N iff @M ≈ @N M@F ≈ Hom(@M,F) Presheaves Mod@ @Mod Mod

Presheaves F ¥ G = pointwise cartesian product A@1 = {Æ} Example: E = Mod@ F ¥ G = pointwise cartesian product A@G G F ¥ G A@(F ¥ G) = A@F ¥ A@ G Presheaves (f,g) g f F A@F A@1 = {Æ} 1 = {Æ} is terminal: Unique !:X ® 1: x ~> Æ A@!: A@X

Presheaves F + G = pointwise disjoint union A@G G H A@H A@0 Example: E = Mod@ F + G = pointwise disjoint union Presheaves G + H A@(G + H) = A@G + A@ H A@G G H A@H A@0 0 = Æ is initial: Unique !:0 ® X: ? ~> ? A@!: A@0 ® A@X:

Presheaves A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom) Example: E = Mod@ A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom) Define: Presheaves A@XY = Hom(@A ¥ Y, X)

Presheaves Example: E = Mod@ subobject classifier 1 ® W A@W = {subpresheaves of @A} = {sieves in @A} 1 ® W : 0 ~> @A Presheaves 1 W X Y c ! Subpresheaves(Y) ª Hom(Y,W)

? Functorial Locs In Mod@ replace 2F by WF Understand the musical meaning of the difference! A@2F = 2A@F ={subsets of A@F} = {A-addressed local objective compositions in F} ObLocomA, but F = presheaf, not only module! A@ WF ≈ Hom(@A,WF) ≈ Hom(@A ¥ F,W) ≈ Subpresheaves(@A ¥ F) = {A-addressed local functorial compositions in F} ? Functorial Locs

Functorial Locs ^: A@2F  A@WF K  A@F ~> K^  @A  F X@K^  X@A  X@F = {(f,x.f), f:X  A, x  K} f@F: A@F  X@F: x ~> x.f Functorial Locs K F f@K^ 1A f:X  A @A

H Functorial Locs E K Í Ÿ @F F = @EH ª @—2 f1: 0Ÿ  Ÿ: 0 ~> 1

Functorial Locs series S Î Ÿ11 @ Ÿ12 K = {S} S More general: set of k sequences of pitch classes of length t+1 K = {S1,S2,...,Sk} This is a „polyphonic“ local composition K  Ÿt @ Ÿ12 Ÿ12 S1 Sk

Functorial Locs s ≤ t, define morphism f: Ÿs  Ÿt e0 ~> ei(0) Sk Ÿ12 Functorial Locs s ≤ t, define morphism f: Ÿs  Ÿt e0 ~> ei(0) e1 ~> ei(1) ................. es ~> ei(s) e0 e1 es Ÿs f@K^ S1.f Sk.f Ÿ12

The „functorial“ change K ~> K^ has dramatic consequences for the global theory! I IV V II III VI VII I IV II VI V III VII Functorial Locs A = 0Ÿ X  Ÿ12 ~> X* = End*(X)  Ÿ12@Ÿ12 A = Ÿ12

Functorial Locs ToM, ch. 25 II* I* Ÿ12@Ÿ12 I*  II* =  I* IV* II* VI*

Functorial Locs X*  Ÿ12@Ÿ12 X*^  (Ÿ12@Ÿ12)^  @Ÿ12  @Ÿ12 (Ÿ12@Ÿ12)^ I*  II* =  II* I*^  II*^   II*^

Functorial Locs @Ÿ12 I*  e0.4 I*^ II*^ f@I*^f@II*^  e8.0 II*  1Ÿ12 II*^ f@I*^f@II*^ Functorial Locs f@II*^  e8.0 II*  e11.3 f = e11.0: Ÿ12  Ÿ12 @Ÿ12 e0.4.e11.0 = e11.3.e11.0 = e8.0

Functorial Locs I* I*^ I*^  II*^ II* II*^ @Ÿ12

Functorial Locs Consequences for sheaves of functions Z Xi Xj (Xi) (Xij) (Xj) (Xji) ¿ ≈ ?

Functorial Locs Grothendieck topology of finite covering families Xi Z Xj ( Xi ¥Z Xj) Xi ¥Z Xj (Xj)

concept modeling unity infinite recursion completeness discourse universal ramification ordered combinatorics concept modeling concept concept

concept modeling AnchorNote Pause Note Onset Duration Onset Loudness Pitch – – – Ÿ STRG –

concept modeling MakroNote Satellites AnchorNote MakroNote Ornaments Schenker Analysis Satellites AnchorNote – Onset Loudness Duration Pitch Note STRG Ÿ Pause concept modeling MakroNote

FM-Synthesis concept modeling

concept modeling FM-Object Knot Support Modulator Amplitude Phase FM-Synthesis FM-Object Knot concept modeling Support Modulator Amplitude Phase Frequency FM-Object – – –

concept modeling Forms F = form name one of five „space“ types a name diagram √ in Mod@ Forms an identifier monomorphism in Mod@ id: Functor(F) >® Frame(√) concept modeling Frame(√) >® Functor(F) F:id.type(√)

concept modeling renaming representation conjunction disjunction Frame(√)-space for type: synonyme √ = „G“ ~> Functor(G) synonyme(√) = Functor(G) renaming simple √ = „“~> @B simple(√) = @B representation concept modeling limit √ = name diagram ® Mod@ limit(√) = lim(n. diagram ® Mod@) conjunction colimit √ = name diagram ® Mod@ colimit(√) = colim(n. diagram ® Mod@) disjunction power √ = „G“ ~> Functor(G) power(√) = WFunctor(G) collection

concept modeling Denotators D = denotator name A address A K Frame(√) K Î A @ Functor(F) „A-valued point“ >® Functor(F) Form F D:A@F(K)

concept modeling

concept modeling E = Topos Mod@ = Topos R Í E S Mod Í Mod@ Names F Forms S S(F) = (typeF,idF, √F) F concept modeling Dia(Formsº, Mod@) Types Mono(Mod@) Sema(Forms, Mod@) = Types x Mono(Mod@) x Dia(Formsº, Mod@)

concept modeling E = Topos R Í E S Names F S(F) = (typeF,idF, √F) Forms Sema(Forms,E ) = Types x Mono(E ) x Dia(Formsº,E ) Types Mono(E ) Dia(Formsº,E ) S S(F) = (typeF,idF, √F) F concept modeling

Names F √G Forms typeF concept modeling √F H typeG typeH √H G

concept modeling E -Denotators R Í E D = denotator name A „address“ A Î R K: A ® Topor(F) Topor(F) Î E K concept modeling Form F:id.type(√) Frame(√) >® id: Topor(F) D:A@F(K)

concept modeling Galois Theory Form Semiotic Defining equation Defining diagram fS(X) = 0 √ F x2 x1 xn x3 F2 Fr F1 concept modeling Field S Form Semiotic S

Local Techniques Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.- 1234567890‘^–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠¿´Ÿ™◊˙˚»÷—•Æ˘ˆ¯˜·‚‡flfiÅŒÁËÈÎÍÙıØ∏ÿ’^�ÚÔÒ\][⁄‹”∞ Y¥≈©√∫~µ«…–¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±yxcvbnm,.-$äölkjhgfdsaqwertzuiopü¨^‘0987654321ŒÁËÈÎÍÙıØ∏ÿ’•Æ˘ˆ¯˜·‚‡flfiÅŸ™◊˙˚»÷—^�ÚÔÒ\][⁄‹”∞ As¥≈©◊˙ASDFGHJKLéà£_:;MNBVCXYQWERTZUIOPè!?`=)(/&%ç*“ Qyxcvbnm,.-$äölkjhgfdsaqwertzuiopü¨–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠≠¿´—÷»˚˙◊™ŸÅfifl‡‚·˜¯ˆ˘Æ•’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ�^ Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.-–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠¿´´—÷»˚˙◊™ŸÅfifl‡‚·˜¯ˆ˘Æ•’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ�^ Yxcvbnm,.-$äölkjhgfdsaqwertzuiop–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±œ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Ÿ™◊˙˚»÷—•Æ˘ˆ¯˜·‚‡flfiÅŒÁËÈÎÍÙıØ∏ÿ’^�ÚÔÒ\][⁄‹”∞ Asas-.,mnbvcxyasdfghjklööä$¨üpoiuztrewq123¥≈©√∫~µ«…–¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Åfifl‡‚·˜¯ˆ˘Æ•ÿŒÁËÈÎÍÙıØ∏ÿÿ’—÷»˚˙◊™Ÿ Local Techniques