Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘ Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org
Where we are... What is a topos? The topos of presheaves Functorial local compositions Concept modeling over topoi Contents
Where we are... C Í Ÿ12 (chords) M Í — 2 (motives) Ambient space Ÿ12 = finite -> enumeration, Pólya & de Bruijn —2 = infinite -> ??
Where we are... B K Í B set module B @ 0Ÿ@B K Í 0Ÿ@B A A = Ÿn: sequences (b0,b1,…,bn) A = B: self-addressed tones Need general addresses A
Where we are... B M Í A@B M Í B A@B = eB.Lin(A,B) A = R R@B = eB.Lin(R,B) ª B2
Where we are... Ÿ12 S A@B = eB.Lin(A,B) R = Ÿ, A = Ÿ11, B= Ÿ12 Series: S Î Ÿ11 @ Ÿ12 = e Ÿ12.Lin(Ÿ11, Ÿ12) ª Ÿ12 12
I II III IV V VI VII Where we are...
Where we are... The class nerve cn(K) of global composition is not classifying I IV II VI V III VII 10 15 5 6 2 Where we are...
Where we are... Motivic strip of Zig-Zag (15) 5 6 4 (16) (19) (19) 7 3 8 2 5 3 (15) Where we are... (16) (19) (19) (2) (11) (20) (10) (15)
B = „EH“ ª —2 M Í Ÿ@B E H Where we are... E
Where we are... Have universal construction of a „resolution of KI“ res: ADn* ® KI It is determined only by the KI address A and the nerve n* of the covering atlas I. Where we are... ADn* KI res
Where we are... 0Dn* res KI 6 5 2 3 4 1 a d b c 1 2 3 4 6 5 5 6 3 4 1
„Classified“ Where we are... The category ObLocomA of local objective A-addressed compositions has as objects the couples (K, A@C) of sets K of affine morphisms in A@C and as morphisms f: (K, A@C) ® (L, A@D) set maps f: K ® L which are naturally induced by affine morphism F in C@D The category ObGlocomA of global objective A-addressed compositions has as objects KI coverings of sets K by atlases I of local objective A-addressed compositions with manifold gluing conditions and manifold morphisms ff: KI ® LJ, including and compatible with atlas morphisms f: I ® J Where we are... „Classified“
What is a Topos? Sets cartesian products X x Y Mod@ F: Mod —> Sets presheaves have all these properties Sets cartesian products X x Y disjoint sums X È Y powersets XY characteristic maps c: X —> 2 no „algebra“ What is a Topos? Mod direct products A≈B has „algebra“ no powersets no characteristic maps
What is a Topos? A category E is a topos iff it has terminal object 1 and products A ¥ B has initial object 0 and coproducts A + B has exponentials XY has a subobject classifier 1 ® W What is a Topos? Our examples: 1) E = Sets sets 2) E = Mod@ presheaves over the category Mod of modules
What is a Topos? A ¥ B = cartesian product 1 = {Æ} is terminal: Example: E = Sets A ¥ B = cartesian product B A ¥ B What is a Topos? (a,b) b a A 1 = {Æ} is terminal: There is a unique !:X ® 1: x ~> Æ
What is a Topos? A + B = disjoint union, 0 = Æ A B 0 = Æ is initial: Example: E = Sets A + B = disjoint union, 0 = Æ A + B What is a Topos? A B 0 = Æ is initial: There is a unique !:0 ® X: ? ~> ?
What is a Topos? XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) Example: E = Sets XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) g: Z ® XY ~> g*: Z ¥ Y ® X g*(z,y)=g(z)(y) What is a Topos?
What is a Topos? Example: E = Sets subobject classifier 1 ® W = 2 = {0,1} 1 ® 2: 0 ~> 0 X Y ! c What is a Topos? c(x) = 0 iff x Î X 1 2 Y X Subobjects(Y) ª Hom(Y,W) {0,1}
What is a Topos? Counterexample: E = ModR with R-linear maps There is no subobject classifier here! 0-module X Y c ! What is a Topos? X = Ker(c) Y/X ≈ Im(c) absurd!
More generally, take the category Mod of modules over any rings, together with (di)affine morphism „A@B“. This is not only not a topos, it has other not very agreable properties: Have no module M+N for the property k A@M or k A@N iff k A@(M+N) Have no module P(M) for the property K A@M iff K A@P(M) What is a Topos?
Presheaves @M = presheaf of M Problem: When replacing M by the set A@M, we loose all information about M. Solution: Replace a module M by the system of sets @M: Mod Sets: A ~> A@M „set of all perspectives of M, as viewed from A“ Presheaves B u A M u@M: A@M B@M 1A@M = 1A@M u.v:C B A u.v@M = v@M.u@M g g.u @M = presheaf of M
Presheaves Mod@ = category of presheaves on Mod Presheaves: F: Mod Sets: A ~> F(A) A@F Together with the transition maps u@F : A@F B@F for u:B A with the properties Presheaves 1A@F = 1A@F u.v: C B A u.v@F = v@F.u@F Mod@ = category of presheaves on Mod
Presheaves Example 1 S = set, @S: Mod Sets: A ~> A@S = S Transition maps, u: B A, u@S = 1S : S S Presheaves „small topos within a large topos“ Sets @Sets Mod@
Presheaves Example 2 M = module, 2@M: Mod Sets: A ~> A@ 2@M = 2A@M Transition maps, u: B A, u@2@M : A@2@M B@2@M u@M: A@M B@M K A@M ~> u@M(K) B@M Presheaves K u@M(K)
Presheaves Example 2* F = presheaf, 2F: Mod Sets: A ~> A@2F = 2A@F Transition maps, u: B A, u@2F : A@2F B@2F u@F: A@F B@F K A@F ~> u@F(K) B@F Presheaves K u@F(K)
Presheaves Example 3 M, N = modules, @M+@N: Mod Sets: A ~> A@M + A@N Transition maps, u: B A Presheaves B@M A@M A@N B@N
Presheaves Example 3* F, G = presheaves, F+G: Mod Sets: A ~> A@F + A@G Transition maps, u: B A Presheaves B@F A@F A@G B@G
Presheaves Why are presheaves a solution? Yoneda Lemma The functorial map @: Mod ® Mod@ is fully faithfull. M ~> @M M@N ≈ Hom(@M,@N) M ≈ N iff @M ≈ @N M@F ≈ Hom(@M,F) Presheaves Mod@ @Mod Mod
Presheaves F ¥ G = pointwise cartesian product A@1 = {Æ} Example: E = Mod@ F ¥ G = pointwise cartesian product A@G G F ¥ G A@(F ¥ G) = A@F ¥ A@ G Presheaves (f,g) g f F A@F A@1 = {Æ} 1 = {Æ} is terminal: Unique !:X ® 1: x ~> Æ A@!: A@X
Presheaves F + G = pointwise disjoint union A@G G H A@H A@0 Example: E = Mod@ F + G = pointwise disjoint union Presheaves G + H A@(G + H) = A@G + A@ H A@G G H A@H A@0 0 = Æ is initial: Unique !:0 ® X: ? ~> ? A@!: A@0 ® A@X:
Presheaves A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom) Example: E = Mod@ A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom) Define: Presheaves A@XY = Hom(@A ¥ Y, X)
Presheaves Example: E = Mod@ subobject classifier 1 ® W A@W = {subpresheaves of @A} = {sieves in @A} 1 ® W : 0 ~> @A Presheaves 1 W X Y c ! Subpresheaves(Y) ª Hom(Y,W)
? Functorial Locs In Mod@ replace 2F by WF Understand the musical meaning of the difference! A@2F = 2A@F ={subsets of A@F} = {A-addressed local objective compositions in F} ObLocomA, but F = presheaf, not only module! A@ WF ≈ Hom(@A,WF) ≈ Hom(@A ¥ F,W) ≈ Subpresheaves(@A ¥ F) = {A-addressed local functorial compositions in F} ? Functorial Locs
Functorial Locs ^: A@2F A@WF K A@F ~> K^ @A F X@K^ X@A X@F = {(f,x.f), f:X A, x K} f@F: A@F X@F: x ~> x.f Functorial Locs K F f@K^ 1A f:X A @A
H Functorial Locs E K Í Ÿ @F F = @EH ª @—2 f1: 0Ÿ Ÿ: 0 ~> 1
Functorial Locs series S Î Ÿ11 @ Ÿ12 K = {S} S More general: set of k sequences of pitch classes of length t+1 K = {S1,S2,...,Sk} This is a „polyphonic“ local composition K Ÿt @ Ÿ12 Ÿ12 S1 Sk
Functorial Locs s ≤ t, define morphism f: Ÿs Ÿt e0 ~> ei(0) Sk Ÿ12 Functorial Locs s ≤ t, define morphism f: Ÿs Ÿt e0 ~> ei(0) e1 ~> ei(1) ................. es ~> ei(s) e0 e1 es Ÿs f@K^ S1.f Sk.f Ÿ12
The „functorial“ change K ~> K^ has dramatic consequences for the global theory! I IV V II III VI VII I IV II VI V III VII Functorial Locs A = 0Ÿ X Ÿ12 ~> X* = End*(X) Ÿ12@Ÿ12 A = Ÿ12
Functorial Locs ToM, ch. 25 II* I* Ÿ12@Ÿ12 I* II* = I* IV* II* VI*
Functorial Locs X* Ÿ12@Ÿ12 X*^ (Ÿ12@Ÿ12)^ @Ÿ12 @Ÿ12 (Ÿ12@Ÿ12)^ I* II* = II* I*^ II*^ II*^
Functorial Locs @Ÿ12 I* e0.4 I*^ II*^ f@I*^f@II*^ e8.0 II* 1Ÿ12 II*^ f@I*^f@II*^ Functorial Locs f@II*^ e8.0 II* e11.3 f = e11.0: Ÿ12 Ÿ12 @Ÿ12 e0.4.e11.0 = e11.3.e11.0 = e8.0
Functorial Locs I* I*^ I*^ II*^ II* II*^ @Ÿ12
Functorial Locs Consequences for sheaves of functions Z Xi Xj (Xi) (Xij) (Xj) (Xji) ¿ ≈ ?
Functorial Locs Grothendieck topology of finite covering families Xi Z Xj ( Xi ¥Z Xj) Xi ¥Z Xj (Xj)
concept modeling unity infinite recursion completeness discourse universal ramification ordered combinatorics concept modeling concept concept
concept modeling AnchorNote Pause Note Onset Duration Onset Loudness Pitch – – – Ÿ STRG –
concept modeling MakroNote Satellites AnchorNote MakroNote Ornaments Schenker Analysis Satellites AnchorNote – Onset Loudness Duration Pitch Note STRG Ÿ Pause concept modeling MakroNote
FM-Synthesis concept modeling
concept modeling FM-Object Knot Support Modulator Amplitude Phase FM-Synthesis FM-Object Knot concept modeling Support Modulator Amplitude Phase Frequency FM-Object – – –
concept modeling Forms F = form name one of five „space“ types a name diagram √ in Mod@ Forms an identifier monomorphism in Mod@ id: Functor(F) >® Frame(√) concept modeling Frame(√) >® Functor(F) F:id.type(√)
concept modeling renaming representation conjunction disjunction Frame(√)-space for type: synonyme √ = „G“ ~> Functor(G) synonyme(√) = Functor(G) renaming simple √ = „“~> @B simple(√) = @B representation concept modeling limit √ = name diagram ® Mod@ limit(√) = lim(n. diagram ® Mod@) conjunction colimit √ = name diagram ® Mod@ colimit(√) = colim(n. diagram ® Mod@) disjunction power √ = „G“ ~> Functor(G) power(√) = WFunctor(G) collection
concept modeling Denotators D = denotator name A address A K Frame(√) K Î A @ Functor(F) „A-valued point“ >® Functor(F) Form F D:A@F(K)
concept modeling
concept modeling E = Topos Mod@ = Topos R Í E S Mod Í Mod@ Names F Forms S S(F) = (typeF,idF, √F) F concept modeling Dia(Formsº, Mod@) Types Mono(Mod@) Sema(Forms, Mod@) = Types x Mono(Mod@) x Dia(Formsº, Mod@)
concept modeling E = Topos R Í E S Names F S(F) = (typeF,idF, √F) Forms Sema(Forms,E ) = Types x Mono(E ) x Dia(Formsº,E ) Types Mono(E ) Dia(Formsº,E ) S S(F) = (typeF,idF, √F) F concept modeling
Names F √G Forms typeF concept modeling √F H typeG typeH √H G
concept modeling E -Denotators R Í E D = denotator name A „address“ A Î R K: A ® Topor(F) Topor(F) Î E K concept modeling Form F:id.type(√) Frame(√) >® id: Topor(F) D:A@F(K)
concept modeling Galois Theory Form Semiotic Defining equation Defining diagram fS(X) = 0 √ F x2 x1 xn x3 F2 Fr F1 concept modeling Field S Form Semiotic S
Local Techniques Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.- 1234567890‘^–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠¿´Ÿ™◊˙˚»÷—•Æ˘ˆ¯˜·‚‡flfiÅŒÁËÈÎÍÙıØ∏ÿ’^�ÚÔÒ\][⁄‹”∞ Y¥≈©√∫~µ«…–¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±yxcvbnm,.-$äölkjhgfdsaqwertzuiopü¨^‘0987654321ŒÁËÈÎÍÙıØ∏ÿ’•Æ˘ˆ¯˜·‚‡flfiÅŸ™◊˙˚»÷—^�ÚÔÒ\][⁄‹”∞ As¥≈©◊˙ASDFGHJKLéà£_:;MNBVCXYQWERTZUIOPè!?`=)(/&%ç*“ Qyxcvbnm,.-$äölkjhgfdsaqwertzuiopü¨–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠≠¿´—÷»˚˙◊™ŸÅfifl‡‚·˜¯ˆ˘Æ•’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ�^ Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.-–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢¢æ¶‘§πø¡°Ω†®€∑œ±“#Ç[]|{}≠¿´´—÷»˚˙◊™ŸÅfifl‡‚·˜¯ˆ˘Æ•’ÿ∏ØıÙÍÎÈËÁŒ∞”‹⁄[]\ÒÔÚ�^ Yxcvbnm,.-$äölkjhgfdsaqwertzuiop–…«µ~∫√©≈¥åß∂ƒ@ªº∆¬¢æ¶‘§πø¡°Ω†®€∑œ±œ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Ÿ™◊˙˚»÷—•Æ˘ˆ¯˜·‚‡flfiÅŒÁËÈÎÍÙıØ∏ÿ’^�ÚÔÒ\][⁄‹”∞ Asas-.,mnbvcxyasdfghjklööä$¨üpoiuztrewq123¥≈©√∫~µ«…–¶æ¢¬∆ºª@ƒ∂ßåœ∑€®†Ω°¡øπ§‘´¿≠}{|][Ç#“±Åfifl‡‚·˜¯ˆ˘Æ•ÿŒÁËÈÎÍÙıØ∏ÿÿ’—÷»˚˙◊™Ÿ Local Techniques