AERONET Processing Algorithms Refinement AERONET Workshop May 10 - 14, 2004, El Arenosillo, Spain.

Slides:



Advertisements
Similar presentations
Proposed new uses for the Ceilometer Network
Advertisements

Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
UPRM Lidar lab for atmospheric research 1- Cross validation of solar radiation using remote sensing equipment & GOES Lidar and Ceilometer validation.
Deep Blue Algorithm: Retrieval of Aerosol Optical Depth using MODIS data obtained over bright surfaces 1.Example from the Saharan Desert. 2.Deep Blue Algorithm.
THE OPTICAL PROPERTIES OF ATMOSPHERE DURING NATURAL FIRE EXPERIMENT IN CENTRAL RUSSIA AND THEIR IMPACT ON UV IRRADIANCE Nataly Ye. Chubarova Moscow State.
May 10, 2004Aeronet workshop Can AERONET help with monitoring clouds? Alexander Marshak NASA/GSFC Thanks to: Y. Knyazikhin, K. Evans, W. Wiscombe, I. Slutsker.
The EvK2 Pyramid and the AERONET network “Atmospheric Brown Cloud" Characterization via Sunphotometer Observations G.P. Gobbi, F. Barnaba, and F. Angelini.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Ben Kravitz Tuesday, November 10, 2009 AERONET. What is AERONET? AErosol RObotic NETwork Worldwide collection of sun photometers.
1 Cloud Droplet Size Retrievals from AERONET Cloud Mode Observations Christine Chiu Stefani Huang, Alexander Marshak, Tamas Várnai, Brent Holben, Warren.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Radiation: WHY CARE ??? the ultimate energy source, driver for the general circulation usefully applied in remote sensing (more and more)
Now That I Know That… What Do I Do? (Analyzing your Microtop Solar Radiometry Data)
EVALUATION OF THE AEROSOL TYPE EFFECT ON THE SURFACE REFLECTANCE RETRIEVAL USING CHRIS/PROBA IMAGES OVER LAND Cecilia Tirelli 1, Ciro Manzo 2, Gabriele.
AERONET Web Data Access and Relational Database David Giles Science Systems and Applications, Inc. NASA Goddard Space Flight Center.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Characterization of Aerosol Physical, Optical and Chemical Properties During the Big Bend Regional Aerosol and Visibility Observational Study (BRAVO) Jenny.
Aerosol Optical Properties in Southeast Asia From AERONET Observations T.F. Eck 1, B.N. Holben 1, J. Boonjawat 2, A. Snidvongs 2, H.V. Le 3, J.S. Schafer.
Trace gas and AOD retrievals from a newly deployed hyper-spectral airborne sun/sky photometer (4STAR) M. Segal-Rosenheimer, C.J. Flynn, J. Redemann, B.
Ilya Slutsker Data Base Development, Processing and Data Archive Data Collection Archives Processing Data Access Delivery and Distribution.
The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS)
Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)
A four year record of Aerosol Absorption measurements from OMI near UV observations Omar Torres Department of Atmospheric and Planetary Sciences Hampton.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET-AQ Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Originally.
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research Development and Results from First Test-flights A collaboration involving: PNNL:
1 Clear-Sky irradiance observations and models to analyze aerosol characteristic over Semi-arid Reno, NV. By: Addison Liming Jayne Boehmler Marcela Loria-Salazar.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Measuring UV aerosol absorption. Why is aerosol UV absorption important ? Change in boundary layer ozone mixing ratios as a result of direct aerosol forcing.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Line-by-Line Radiative Transfer Model (LBLRTM) Calculations for Gas Corrections for MODIS Falguni Patadia, Rob Levy November 8, 2012 Aerosol Retreat.
1 NOAA-UPRM COOP Program in Atmospheric Sciences and Meteorology, Department of Physics, University of Puerto Rico at Mayagüez, Mayagüez, PR Yaítza.
Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) Thomas F. Eck (Code 618 NASA GSFC) and Brent N. Holben (Code.
4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Results from Test-flight Series PNNLNASA AmesNASA GSFC B. SchmidS. DunaganS. Sinyuk.
Accounting for non-sphericity of aerosol particles in photopolarimetric remote sensing of desert dust Oleg Dubovik (UMBC / GSFC, Code 923) Alexander.
1 N. Christina Hsu, Deputy NPP Project Scientist Recent Update on MODIS C6 Deep Blue Aerosol Products and Beyond N. Christina Hsu, Corey Bettenhausen,
CLN QA/QC efforts CCNY – (Barry Gross) UMBC- (Ray Hoff) Hampton U. (Pat McCormick) UPRM- (Hamed Parsiani)
AERONET Inversions: Progress and Perspectives Oleg Dubovik (NASA / GSFC) Alexander Sinyuk (NASA / GSFC) Tatyana Lapyonok (NASA / GSFC) Brent Holben (NASA.
Limb Retrieval at IFE/IUP in Bremen Working team: A. Rozanov, K.-U. Eichmann, C. v. Savigny, J. Kaiser Tests based on level 0 data Normalisation by –Solar.
Retrieval of biomass burning aerosols with combination of near-UV radiance and near -IR polarimetry I.Sano, S.Mukai, M. Nakata (Kinki University, Japan),
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
AERONET DRAGON Campaign, Summer 2011 Christina Justice College Park Scholars – Science & Global Change Program Environmental Science and Policy
Airborne Sunphotometry and Closure Studies during the SAFARI-2000 Dry Season Campaign B. Schmid BAER/NASA Ames Research Center, Moffett Field, CA, USA.
Airborne Sunphotometry and Closure Studies in the SAFARI-2000 Dry Season Campaign B. Schmid 1, P.B. Russell 2, P.Pilewskie 2, J. Redemann 1, P.V. Hobbs.
BROADBAND INSTRUMENTS ENEA/Univ. of Valencia TypeModelMeasurementSpectral interval FOVAcquisition PyranometerCMP21Global SW↓ irradiance nm180°30.
Radiative transfer simulations of the ATR-42 SW and LW irradiance profiles above Lampedusa Island Daniela Meloni with contributions from: ChArMEx/ADRIMED.
AERONET: New Aerosol products, data access, and reanalysis of data for mixtures of fine and coarse mode aerosols Brent Holben 1 Tom Eck 1, Oleg Dubovik.
Preliminary Analysis of Relative MODIS Terra-Aqua Calibration Over Solar Village and Railroad Valley Sites Using ASRVN A. Lyapustin, Y. Wang, X. Xiong,
The Use of Spectral and Angular Information In Remote Sensing
Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Earth Science Division - NASA Ames Research Center 2006 A concept for a sun-sky.
Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, FRANCE Aerosols spatial distribution (vertical / horizontal) using.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Visible vicarious calibration using RTM
Fourth TEMPO Science Team Meeting
JAXA Himawari-8 Ocean Color and Aerosol
Near UV aerosol products
SEVIRI Solar Channel Calibration system
sun- (/sky-) photometer ground-networks
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Measuring aerosol UV absorption by combining use of shadowband and almucantar techniques N.A. Krotkov, Goddard Earth Sciences and Technology Center /UMBC.
Remote Sensing of Aerosols
Remote Sensing of Aerosols
Climate Forcing.
Chris Sioris Kelly Chance
Presentation transcript:

AERONET Processing Algorithms Refinement AERONET Workshop May , 2004, El Arenosillo, Spain

AERONET Data Flows Flux measurements Direct - =340, 380, 440, 500, 670, 870, 940, 1020 nm Diffuse - =440, 670, 870, 1020 nm (alm, pp, pol) Calibration and processing information Aerosol optical depth and precipitable water computations Holben et al. RSE, 1998 Holben et al. JGR, 2001 Holben et al. RSE, 1998 Holben et al. JGR, 2001 Smirnov et al. RSE, 2000 Smirnov et al. RSE, 2000 Dubovik and King JGR, 2000 Dubovik et al. JGR, 2000 Dubovik and King JGR, 2000 Dubovik et al. JGR, 2000 Cloud screening and quality control Eck et al. JGR, 1999 Eck et al. JGR, 1999 Inversion products Volume size distribution (0.05<R<15 mm), refractive index, single scattering albedo (l=440, 670, 870, 1020 nm)

AERONET Data Flows Current and future additions Flux measurements nm (412, 532, 555 nm) Sun - =340, 380, 440, 500, 670, 870, 940, 1020 nm nm (412, 532, 555 nm) +500, 1640 nm? 340, 380 nm Sky - =440, 670, 870, 1020 nm + 500, 1640 nm + ? 340, 380 nm H 2 O, CO 2, CH 4 Calibration and processing information H 2 O, CO 2, CH 4 (1020, 1640, 940 nm) + extra  a (1020 nm) Aerosol optical depth and precipitable water computations (1020, 1640, 940 nm) + extra  a (1020 nm) Cloud screening and quality control Inversion products Almucantar retrievals - spherical and spheroid models (4 wavelengths), level 2 6 wavelengths+ ? 340, 380 nm Almucantar retrievals - 6 wavelengths + ? 340, 380 nm Principal plane retrievals - 4 wavelengths, level 2; ? 6 wavelengths ? Combined retrievals (almucantar and principal plane)

Current Processing Algorithm l Extraterrestrial Solar Flux - Neckel and Labs 1981; and Frohlich and Wehrli 1981 l Rayleigh optical depth - Edlen 1966 l Ozone amount - LUT (5ºx 5º Lat Long) - London et al l Water vapor content - Bruegge et al. 1992; Reagan et al l Water vapor correction for AOD (1020 nm) - none l CO2, CH4, WV for AOD (1640 nm) - N/A

Processing Algorithm Refinement l Extraterrestrial Solar Flux - Woods et al l Rayleigh optical depth - Bodhaine et al l Ozone amount - LUT (1ºx 1º Lat Long) - TOMS data l Water vapor content - Michalsky et al. 1995; Schmid et al l Water vapor correction for AOD (1020 nm) - LBLRTM l CO2, CH4, WV for AOD (1640 nm) - LBLRTM

Extraterrestrial Solar Flux

Courtesy Dr. Jay Herman, code 916, NASA/GSFC

Rayleigh Optical Depth

T w = exp(-A(mu) B ) Ln V( ) + m[  a ( )+  r ( )]= = Ln [V 0 ( )d -2 ] - A(mu) B V( ) = V 0 ( )d -2 exp{-m[  a ( )+  r ( )]}T w ( ) T w ( ) = ∫ E 0 ( )S( )exp[-m  w ( )] d / E 0 ( )S( )d

Parameters A and B for various filter batches

Optical Depth Correction at 1020 nm

Optical Depth Correction at 1640 nm

AERONET Precipitable Water Comparison

AERONET-GPS Precipitable Water Comparison

What to do next l Recalibrate Master instruments (water vapor channel only) l Recalculate calibration constants (water vapor channel only) for all instruments in the network l Update database on water vapor content l Quality assure PW (WVC) database l Compare QC/QA PW with GPS and MWR retrievals