Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Dust Formation in Extreme Astronomical Objects Takaya Nozawa Kavli IPMU, Univeristy of Tokyo ( ➔ moving to the theory group of NAOJ from this April) 2014/03/14.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
National Astronomical Observatory of Japan
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT) In collaboration with A. Bressan (SISSA), P. Marigo (UNIPD) & L. Danese.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
2017/01/23 Properties of Dust Accounting for Extinction Laws toward Type Ia Supernovae (Nozawa, T. 2016, Planetary and Space Science, 133, 36) Takaya Nozawa.
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University) K. Maeda, K. Nomoto, M. Tanaka (IPMU) N. Tominaga (Konan Univ.), H. Umeda, I. Sakon (U.T.) H. Hirashita (ASIAA), T. T. Takeuchi (Nagoya Univ.)

Outline 1. Introduction - Properties of interstellar dust in the Galaxy - Observations of dust at high redshift 2. Formation and evolution of dust in Population III Type II-P and pair-instability SNe 3. Formation of dust grains in various types of SNe 4. Missing-dust problem in core-collapse SNe 5. Implication and Summary

1. Introduction

Cosmic dust ○ Cosmic dust : solid particles with radii of a few nm to ~0.1 mm in astronomical environments Dust grains absorb UV/optical lights and reemit it by their thermal radiation at IR wavelengths! Milky Way (optical) Milky Way (infrared) interplanetary dust, interstellar dust, intergalactic dust …

Interstellar dust in our Galaxy ○ Dust in our Galaxy - composition : graphite (carbonaceous) grains silicate ( SiO 2, Mg 2 SiO 4, MgFeSiO 4, … ) grains - size : n(a) = f(a)da = a -3.5 da (0.005~0.25 μm) - amount : M dust / M gas ~ 1 / 140 (~10 9 M sun ) ➔ MRN dust model (e.g., Mathis+’77; Draine & Lee’84) extinction curve IR spectral feature depletion of elements ➔ where and when is dust formed?

Formation site of dust ○ Formation sites of dust ・ abundant metal (metal : N > 5) ・ low gas temperature (T < ~2000 K) ・ high gas density (n > ~10 8 cm -3 ) - mass-loss winds of AGB stars - expanding ejecta of supernovae (SNe) - molecular clouds (grain growth only) - red giant, W-R stars, novae, protoplanetary disk … ejected gas : / ~ 1-2 ejected dust : f AGB / f SN > 1-2?

・ The submm observations have confirmed the presence of dust in excess of 10 8 M sun in 30% of z > 5 quasars ➔ We see warm dust grains heated by absorbing stellar lights in the host galaxies of the quasars SDSS J at z= Discovery of massive dust at z > 5 Leipski+’10, A&A, 518, L34 - age : Myr - IR luminosity : ~(1-3)x10 13 L sun - dust mass : (2-7)x10 8 M sun - SFR : ~3000 M sun /yr (Salpeter IMF) - gas mass : ~3x10 10 M sun (Walter+’04) - metallicity : ~solar

・ Supernovae (Type II SNe) ➔ ~0.1 M sun per SN is sufficient (Morgan & Edmunds’03; Maiolino+’06; Li+’08) ➔ > 1 M sun per SN (Dwek+’07) ・ AGB stars + SNe (Valiante+’09; Gall+’11; Dwek & Cherchneff’11) ➔ M sun per AGB (Zhukovska & Gail ’08) ➔ M sun per SN ・ Grain growth in dense clouds + AGB stars + SNe (Draine’09; Michalowski+’10; Pipino+’11; Mattsson’11) ➔ τ growth ~ 10^7 (Z / Z sun ) yr ・ Quasar outflows (Elvis+’02) What are dust sources in high-z quasar?

Maiolino+’04, Nature, 431, 533 Broad absorption line (BAL) quasars SDSS J at z= Extinction curves at high-z quasars different dust properties from those at low redshifts Dust model in MW (MRN) ・ silicate & graphite ・ f(a)da = a^{-3.5}da μm < a < 0.25 μm ・ dust-gas ratio : 1/140

Extinction curves at 3.9 < z < 6.4 The mean Extinction curves for BAL quasars deviates from the SMC with level > 95 % Gallerani+’10, A&A, 523, 85 7 of 33 requires substantial dust extinction, which deviates from the SMC

GRB at z=6.3 Stratta+’07, ApJ, 661, L9 additional evidence for different dust properties at high-z but see Liang & Li’09, ApJ, 690, L56 Zafar+’10, A&A, 514, 94 Zafer+’11, arXiv / Extinction curves from high-z GRBs Li+’08, ApJ, 678, 1136 Perley+’10, MNRAS, 406, 2473 Perley+’11, AJ, 141, Extinction curves from high-z GRBs GRB A at z=0.6 Heng+’08, ApJ, 681, 1116

・ There is clear evidence for huge amounts of dust at z > 4, but the dust sources remain unexplained ➔ SNe? AGB stars? grain growth in the dense clouds? quasar outflow? any other sources? ・ Properties (composition & size) of dust at high z are likely to be different from those at low z ➔ high-z quasars and GRBs are good targets to probe the extinction curves in their host galaxies 1-3. Summary of Introduction At z > 4, short-lived SNe II (M = 8-40 M sun ) dominate the dust production over AGB stars (M < 8 M sun ) ??

1-4. Aim of our study ・ Dust absorbs stellar light and emits it by thermal radiation ➔ plays a crucial role in interpreting the evolution history of the universe from high-z observations ・ Dust has great impacts on formation processes of stars - forming molecules (mainly H 2 ) on the surface (e.g., Cozaux & Spaans’04) - providing additional cooling pathways of gas through thermal emission (e.g., Omukai+’05; Schneider+’06) - controlling the energy balance in interstellar space 13 We aim at revealing the evolution of composition, size, and amount of dust by taking account into the formation and destruction processes of dust self-consistently

2. Formation and evolution of dust in Pop III SNe II-P and PISNe

at ~1 days H-envelope He-core NS or BH He–layer (C>O) O–Ne-Mg layer Si–S layer Fe–Ni layer Dust formation at ~1-3 years after explosion 2-1. Dust Formation in Pop III SNe

Dust formation in primordial SNe Nozawa+’03, ApJ, 598, 785 ・ nucleation and grain growth theory (Kozasa & Hasegawa’88) ・ no mixing of elements within the He-core ・ complete formation of CO and SiO 〇 Population III SNe model (Umeda & Nomoto’02) ・ SNe II-P : M ZAMS = 13, 20, 25, 30 M sun (E 51 =1) ・ PISNe : M ZAMS = 170 M sun (E 51 =20), 200 M sun (E 51 =28) M env ~ 12 M sun M env ~ 90 M sun

Nucleation rate of dust Steady-state classical nucleation rate Supersaturation ratio

Basic equations of dust formation Equation of conservation for key species Equation of grain growth

Dust formed in primordial SNe ・ Various dust species (C, MgSiO 3, Mg 2 SiO 4, SiO 2, Al 2 O 3, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer ・ The condensation time: days for SNe II-P days for PISNe Nozawa+’03, ApJ, 598, 785

Size distribution of newly formed dust ・ grain radii range from a few A up to 1 μm ・ average dust radius is smaller for PISNe than SNe II-P amount of newly formed dust grains SNe II-P : M dust = M sun, M dust / M metal = PISNe : M dust =20-40 M sun, M dust / M metal = Nozawa+’03, ApJ, 598, 785

FS He core RS CD T = (1-2)x10 4 K n H,0 = cm Dust Evolution in SNRs

Time evolution of shock wave

・ Hydrodynamical model of SNe (Umeda & Nomoto’02) ・ SNe II : M pr =13, 20, 25, 30 Msun (E 51 =1) ・ PISNe : M pr =170 (E 51 =20), 200 Msun (E 51 =28) ・ The ambient medium (homogeneous) ・ gas temperature : T = 10 4 K ・ gas density : n H,0 = 0.1, 1, and 10 cm -3 ・ Dust Model ・ initial size distribution and spatial distribution of dust ➔ results of dust formation calculations ・ treating as a test particle The calculation is performed from 10 yr up to ~10 6 yr Initial condition for shock waves

Dynamics of dust

Erosion rate of dust by sputtering

Erosion rate of dust by sputtering ・ erosion rate by sputtering quickly increases above 10 5 K and peaks at K ・ erosion rate : da / dt ~ n H μm yr -1 cm 3 for the primordial gas (H and He) at T > 10 6 K for primordial composition gas for oxygen ions Nozawa+’06, ApJ, 648, 435

Temperature and density of gas in SNRs Model : M pr = 20 M sun (E 51 =1) n H,0 = 1 cm -3 The temperature of the gas swept up by the shocks ➔ K ↓ Dust grains residing in the shocked hot gas are eroded by sputtering Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel Nozawa+’07, ApJ, 666, 955

Evolution of dust in SNRs Dust grains in the He core collide with reverse shock at (3-13)x10 3 yr The evolution of dust heavily depends on the initial radius and composition a ini = 0.01 μm (dotted lines) ➔ completely destroyed a ini = 0.1 μm (solid lines) ➔ trapped in the shell a ini = 1 μm (dashed lines) ➔ injected into the ISM Model : M pr = 20 M sun (E 51 =1) n H,0 = 1 cm -3 Nozawa+’07, ApJ, 666, 955

Total mass and size of surviving dust total dust mass surviving the destruction in Type II-P SNRs; M sun (n H,0 = cm -3 ) size distribution of surviving dust is domimated by large grains (> 0.01 μm) Nozawa+’07, ApJ, 666, 955

Flattened extinction curves at high-z Hirashita, TN,+’08, MNRAS, 384, 1725 Maiolino+’04, A&A, 420, 889 z=5.8, BALz=5.1, BAL Gallerani+’10, A&A, 523, 85

・ The fate of newly formed dust within primordial SNRs strongly depends on the initial radii and compositions. ・ The size distribution of dust surviving the destruction in SNRs is weighted to relatively large size (> 0.01 μm). ・ The total mass of surviving dust grains decreases with increasing the ambient gas density for n H,0 = cm -3 SNe II-P ➔ M dust = M sun PISNe ➔ M dust = M sun ・ Extinction curves in the early universe are expected to be flat if SNe II-P are main sources of dust at high z Summary of dust production in Pop III SNe

3. Formation of dust grains in various types of SNe

Dust formation in Type IIb SN ○ SN IIb model (SN1993J-like model) - M eje = 2.94 M sun M ZAMS = 18 M sun M H-env = 0.08 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun

Dependence of dust radii on SN type SN IIb SN II-P 0.01 μm - condensation time of dust d after explosion - total mass of dust formed ・ M sun in SN IIb ・ M sun in SN II-P - the radius of dust formed in H-stripped SNe is small ・ SN IIb without massive H-env ➔ a dust < 0.01 μm ・ SN II-P with massive H-env ➔ a dust > 0.01 μm Nozawa+’10, ApJ, 713, 356

Destruction of dust in Type IIb SNR Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of n H > 0.1 /cc ➔ small radius of newly formed dust ➔ early arrival of reverse shock at dust-forming region n H,1 = 30, 120, 200 /cc ➔ dM/dt = 2.0, 8.0, 13x10 -5 M sun /yr for v w =10 km/s homogeneous CSM (ρ = const) stellar-wind CSM (ρ ∝ r -2 ) 330 yr Nozawa+’10, ApJ, 713, 356

IR emission from dust in Cas A SNR ・ total mass of dust formed M dust = M sun ・ shocked dust : M sun M d,warm = M sun ・ unshocked dust : M d,cool = M sun with T dust ~ 40 K AKARI observation M d,cool = M sun T dust = K (Sibthorpe+10) Herschel observation M d,cool = M sun T dust ~ 35 K (Barlow+10) AKARI corrected 90 μm image Nozawa+’10, ApJ, 713, 356

Dust formation in Type Ia SN ○ Type Ia SN model W7 model (C-deflagration) (Nomoto+’84; Thielemann+’86) - M eje = 1.38 M sun - E 51 = 1.3 - M( 56 Ni) = 0.6 M sun

average radius Dust formation and evolution in SNe Ia 0.01 μm Nozawa+’11, arXiv/ dust destruction in SNRs ・ condensation time : days ・ average radius of dust : a ave <~ 0.01 μm ・ total dust mass : M dust = M sun newly formed grains are completely destroyed for ISM density of n H > 0.1 cm -3 ➔ SNe Ia are unlikely to be major sources of dust

Observational data : SN 2005df at day 200 and 400 (Gerardy+’07) Carbon dust and outermost layer - massive unburned carbon (~0.05 M sun ) in deflagration ➔ change of composition of WD by He-shell flash ➔ burning of carbon by a delayed detonation observationally estimated carbon mass in SNe Ia : Mc < 0.01 M sun (Marion+’06; Tanaka+’08) ・ There has been no evidence for dust formation in SNe Ia ➔ Formation of massive carbon dust does not match the observations Nozawa+’11, accepted

Dust formation in super-Chandra SNe? - super-Chandra SNe : M(56Ni) ~ 1.0 M sun detection of CII line ➔ presence of massive unburned carbon enhanced fading at ~200 day ➔ formation of carbon dust? SN 2009dc, Tarbenberger+’10

4. Missing-dust problem in CCSNe

4-1. Difference in estimate of dust mass in SNe ・ Theoretical studies - at time of dust formation : M dust =0.1-1 M sun in CCSNe (Nozawa+’03; Todini & Ferrara’01; Cherchneff & Dwek’10) - after destruction of dust by reverse shock (SNe II-P) : M surv ~ M sun (Nozawa+’07; Bianchi & Schneider’07) dust amount needed to explain massive dust at high-z ・ Observational works - MIR observations of SNe : M dust < M sun (e.g., Ercolano+’07; Sakon+’09; Kotak+’09) - submm observations of SNRs : M dust > 1 M sun (Dunne+’03; Morgan+’03; Dunne+’09) - MIR/FIR observation of Cas A : M dust = M sun (Rho+’08; Sibthorpe+’09; Barlow+’10)

4-2. Missing-dust problem in CCSNe Tanaka, TN,+’11, submitted theory

4-3. Detectability of SNe-dust with SPICA Massive dust can be hidden if T dust < 100 K Tanaka, TN,+’11, submitted

5. Conclusion remarks

5-1. Implication on evolution history of dust (1) Stratta+’05, A&A, 441, 83Li+’08, ApJ, 678, 1136 〇 metal-poor (high-z or starbust) galaxies ・ massive stars (SNe) are dominate ・ mass loss of massive stars would be less efficient ➔ Type II-P SNe might be major sources of dust ・ average radius of dust is relatively large (> 0.01 μm) ・ grain growth makes grain size larger ➔ dust extinction curve might be gray z=0.69 z=4 z=0.54 z=1.16

〇 metal-rich (low-z or Milky Way) galaxies ・ low-mass stars are dominate ・ mass loss of massive stars would be more efficient ➔ SNe (IIb, Ib/c, Ia) might be minor sources of dust ・ dust from AGB stars may also be large ( μm) ➔ How are small dust grains produced? 5-2. Implication on evolution history of dust (2) Hirashita, TN, +’10, MNRAS, 404, 1437 Dust size distribution at t=5 Myr (n H =1 /cc) grain shattering - warm ionized medium (WIM) relative velocity of dust in turbulence : 1-20 km/s - grain shattering is efficient in WIM at t=5 Myr if metallicity is solar and more - the production of small grains by shattering steepens the extinction curve

5-3. Summary of this talk ・ SNe are important sources of dust? - maybe, Yes in the early universe - at least, to serve the seeds for grain growth in the ISM ・ Size of newly formed dust depends on types of SNe - H-retaining SNe (Type II-P) : a ave > 0.01 μm - H-stripped SNe (Type IIb/Ib/Ic and Ia) : a ave < 0.01 μm ➔ dust is almost completely destroyed in the SNRs ➔ H-stripped SNe may be poor producers of dust ・ Our model treating dust formation and evolution self- consistently can reproduce IR emission from Cas A ・ Mass of dust in SNe must be dominated by cool dust ➔ FIR and submm observations of SNe are essential