MEASUREMENT AND CALCULATIONS Chapter 9.2
Significant Digits ► The international agreement about the correct way to record measurements: ► Record all those digits that are certain plus one uncertain digit, and no more. ► These “certain-plus-one” digits are called significant digits. ► The certainty of a measurement is determined by how many certain digits (plus one) are obtained by the measuring instrument.
SIGNIFICANT DIGITS ► All digits included in a stated value ( except leading zeros) are significant digits. ► The position of the decimal point is not important when counting significant digits. ► Examples: ► – 4 sig figs ► 4.03 – 3 sig figs ► 0.04 – 1 sig fig ( leading zeros don’t count) ► – 4 sig figs ► 120. – 3 sig figs
PRACTICE Significant Digits ► 1) 1.02 Km = _______ significant Digits ► 2) 0.32 cm = _______ significant Digits ► 3) 3600 kg = _______ significant Digits ► 4) L = ______ significant Digits ► 5) g = ______ significant Digits
Multiplying or Dividing SIGNIFICANT DIGITS ► When multiplying or dividing significant digits, you round to the value with the least total number of sig. figs. ► Example: ► 4.62 x = = 0.16 ► ÷ 6.40 = = 16.8
ADDING OR SUBTRACTING SIGNIFICANT DIGITS ► When adding or subtracting, you round to the value with the least number of digits after the decimal. ► EXAMPLE: ► = = 11.9 ► – 1.07 = = 8.94
PRACTICE ► 1) (2.4)(6.16) = ______ = _____ ► 2) 16.1 – 2.4 = ______ = _____ ► 3) 4.1 ÷ 8.6 = ______ = _____ ► 4) = ____ = _____
ORDER OF OPERATIONS Significant Digits ► You will come across problems involving both x / ÷ and + / -. This is done step by step using the above rules. ► EXAMPLE: ► 4.3 ÷ 1.2 – 6.1 = – 6.1 ► 3.6 – 6.1 ► 2.5
PRACTICE 1) (6.2)(4.3) – ) 42 – (2.2)(1.3)
ROUNDING NUMBERS ► If the digit after the digit to be rounded is 5 or larger, round up. If not round down. ► Example: ► cm rounded to three Sig. Figs. Digits is 9.15 cm. ► 7.23 g rounded to two Sig. Figs. Digits is 7.2 g.
TRY THESE ROUNDING QUESTIONS ► rounded to one Sig. Fig. Digit ► rounded to three Sig. Fig. Digits ► We now can apply these two concepts to basic mathematical calculations.
REARRANGING FORMULAS ► You must isolate the variable you are trying to solve for. ► To accomplish this you need to use the opposite operation that is indicated. ► EXAMPLE: ► d = vt ( rearrange for v ) ► Divide by t because vt is multiplication. ► d = v ►t►t►t►t
► There is an easy way to rearrange three part equations using the pie method. ► EXAMPLE: ► This does not work for equations such as: ► a = v f – v i OR c = 2πr ► T D VT v = d / t t = d / v d = vt
PRACTICE ► 1) c = m / v ( rearrange for m ) ► 2) a = ½ bh ( rearrange for h) ► ANSWER: ► 1) m = cv ► 2) h = 2a/b
CONVERTING UNITS ► You must understand the metric system to effectively convert. ► Nano ► Micro ► Milli ► Centi ► Basic Symbols: m, g, L ► Kilo ► Mega ► Giga Examples: 1 m = 100 cm 1 m = 1000 mm Examples: 1 g = kg 1 g = mega grams Multiply Divide
► However, you may have to use the conversion factor method that does not involve the metric system or has more than one unit. ► Example: ► 1)How many hours is 20.5 minutes? ► 20.5 min x 1 hour = = h ► 60 min ► 2) How many m/s is 5km/h? ► 5 km x 1 h x 1000 m = 5000 m= m/s ► h 3600s 1 km 3600 s
STEPS FOR SOLVING WORD PROBLEMS ► 1) List all the known and the unknown from the problem. ► 2) Select the best formula which uses the known and unknown. ► ( be careful of extraneous info.) ► 3) Substitute the information into the equation. ► 4) calculate ► 5) round with appropriate significant digits. ► 6) Write a sentence answer.
QUESTIONS ► Text Page 349 ► #1,3,4,6,7,8,9