'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 1 Frequency Comb Vernier spectroscopy C. Gohle, A. Renault, D.Z. Kandula,

Slides:



Advertisements
Similar presentations
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
Advertisements

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
CAVITY RING DOWN SPECTROSCOPY
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
Snowbird, 2007Broad band cavity enhanced Vernier spectroscopy 1 Vernier spectroscopy A broad band cavity enhanced spectroscopy method with cw laser resolution.
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
1S-2S transition frequency measurements in atomic hydrogen N. Kolachevsky MPQ.
Broadband Cavity Enhanced Absorption Spectroscopy With a Supercontinuum Source Paul S. Johnston Kevin K. Lehmann Departments of Chemistry & Physics University.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
National Institute of Standards and Technology Broadband Spectroscopy of CO 2 Bands Near 2μm Using a Femtosecond Mode-Locked Laser ISMS Session.
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
(Towards) Extreme Ultraviolet Frequency Comb Spectroscopy of Helium and Helium+ Ions VU University, Netherlands Kjeld Eikema € from ECT* 28 September –
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
Spectroscopy with comb-referenced diode lasers
Double-Clad Erbium-Ytterbium Co-Doped Fiber Laser Colin Diehl & Connor Pogue.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
WHY ???? Ultrashort laser pulses. (Very) High field physics Highest peak power, requires highest concentration of energy E L I Create … shorter pulses.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Electro-optic Effect made simple? David A. Reis FOCUS Center and Department of Physics, University. of Michigan.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Simple Multiwavelength Time-Division Multiplexed Light Source for Sensing Applications Thilo Kraetschmer and Scott Sanders Engine Research Center Department.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Industrial Affiliates Workshop, Feb Femtosecond enhancement cavities for generation of light at extreme wavelengths R. Jason Jones College of Optical.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Frequency comb lasers on the move to extreme wavelengths Kjeld Eikema LCVU day 17 Dec Christoph Gohle, Dominik Kandula, Tjeerd Pinkert Anne Lisa.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Brit and the Rad Lab at MIT Radiation Laboratory Series: Documented developments from the Rad Lab Volume 19 (copyright 1949): Waveforms- edited by B. Chance.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
Direct Comb Spectroscopy of Buffer-Gas Cooled Molecules Ben Spaun ISMS, 2015 JILA, NIST and University of Colorado at Boulder.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
Broadband Comb-resolved Cavity Enhanced Spectrometer with Graphene Modulator C.-C. Lee, T. R. Schibli Kevin F. Lee C. Mohr, Jie Jiang, Martin E. Fermann.
1 Dual Etalon Frequency Comb Spectrometer David W. Chandler and Kevin E. Strecker Sandia National Laboratories – Biological and Energy Sciences Division.
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
1 Frekvenčni standard in merjenje z optičnim glavnikom.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Pulse train in a tunable cavity
Four wave mixing in submicron waveguides
ISMS 2017 MK02 High-resolution dual-comb spectroscopy with ultra-low noise frequency combs W. Hänsel1, Michele Giunta1,2 , K. Beha1, A. Perry1, R. Holzwarth.
Fiber Laser Preamplifier
69th. International Symposium on Molecular Spectroscopy
Two-Photon Absorption Spectroscopy of Rubidium
Cavity Ring-Down Spectroscopy
A molecular fountain Cunfeng Cheng
Rose-Hulman Institute of Technology Terre Haute, IN
Variable reflectivity signal-recycling mirror and control
And their applications
Precision Control Optical Pulse Train
Presentation transcript:

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 1 Frequency Comb Vernier spectroscopy C. Gohle, A. Renault, D.Z. Kandula, A.L. Wolf, W. Ubachs, K.S.E. Eikema Laser Centre, Vrije Universiteit Amsterdam, DeBoelelaan 1081, 1081 HV Amsterdam A. Ozawa, B. Bernhardt, B. Stein, A. Schliesser, Th. Udem, T.W. Hänsch Max-Planck-Institut für Quantenoptik, Hans-Kopfermannstraße 1, Garching

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 2 Outline Introduction: –Frequency combs and Optical resonators XUV comb generation Optical vernier spectroscopy Outlook

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 3 Frequency combs and optical resonators

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 4 Frequency Combs E(t)=A(t)e i  c t = ++ m=-m=-  A m e -im  r t-i  c t 1 n = n1 r + 1 CE, 1 CE < 1 r,  7=2  1 CE /1 r

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 5 Example: Hydrogen f(1S-2S) = (34) Hz

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 6 Fabry perot resonators light source

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 7 … provide stable references Narrow Markers in Frequency space –If high finesse High stability –~10 1 s –Hz 1 PHz –~ m length stability

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 8 … enhance nonlinear conversion P c =F/  –Output power grows with finesse 2 or higher! Example: –SHG 560nm->280nm –900mW driving power –20% conversion: 900mW->200mW

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 9 … enhance sensitivity Cavity absorbtion spectroscopy –Increased interaction length –Intrinsically narrow band Cavity ring down –Intrinsically robust –Can be broad band

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 10 Response function Can be matched to FC

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 11 Cavity enhanced HHG Obvious requirements –No dispersion Electric field in the pulse envelope has to look the same for both pulses -> equidistant modespacing –f rep = f FSR Timedelay between pulses = cavity roundtrip time –f CEO matches HHG inside the resonator

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 12 XUV Output C. Gohle et al., Nature, 436, 234 (2005) R. J. Jones et al., PRL, 94, (2005) Circ. Power 40W, intensity in the focus 5 x W/cm 2

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 13 Coherence (of the 3rd harm.) C. Gohle et al., Nature, 436, 234 (2005) R. J. Jones et al., PRL, 94, (2005)

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 14 … coherence! (probably)

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 15 Possible Applications Direct frequency comb spectroscopy in the XUV –It is cw, so no transients Compact coherent XUV source for interferometry High repetition rate high intensity source for coincidence measurements BUT: power still low! And many technical problems Use an amplifier!

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 16 Frequency Comb Vernier Spectroscopy

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 17 Direct comb spectroscopy, the good 300 THz I(1)I(1) THz band width and 100 MHz mode spacing. 3,000,000 narrow band modes with 0.3  W power 1 Simultaneously tuneable and referencable Marian et al, PRL, 95, (2005)’ V.Gerginov et al. Optics Letters, 30, 1734 (2005)

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 18 … and the bad Large background –for absorbtion measurements –Causing stark shifts Aliasing –Spectra difficult to interpret Small power per mode –Small signal –Nonlinear (dopplerfree) spectroscopy difficult

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy the remedy

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 20 Data Single scan (10ms) Blue box: unique data Red boxes: identified features Gaussian PSF much larger than airy ! Brightness~Int egral of airy

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 21 Red:HITRAN data O 2 magnetic dipole intercombinationline (760nm) arXiv: v1arXiv: v1 [physics.optics]

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 22 Results* Absorbtion: Noisefloor < /cm (100 Hz) 1/2 = < /cm Hz 1/2 (shotnoise: <10 -8 ) > 4 THz bandwidth 1 GHz sampling (>4000 res. Datapoints in 10 ms) Quantitative agreement in Amplitude and Frequency to HITRAN** database Phase: - agrees with expectations (disp. features) -not optimized for good phase sensitivity -Still <0.1 mrad/Hz 1/2 * arXiv: v1 [physics.optics] arXiv: v1 ** Rothman, L. S. et al., J. Quant. Spect. Rad. Trans., 96, (2005) O 2 A-Band

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 23 … and the bad Large background –for absorbtion measurements –Causing stark shifts Aliasing –Spectra difficult to interpret Small power per mode –Small signal –Nonlinear (dopplerfree) spectroscopy difficult … may be possible … reduced

'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 24 Thanks Maximilian Herrmann (Ion Traps) Sebastian Knünz Valentin Batteiga Albert Schliesser Akira Ozawa (fs-Cavities) Birgitta Bernhardt Jens Rauschenberger Thomas Udem Theodor W. Hänsch Funding: (Hydrogen) Nikolai Kolachevski Janis Alnis Arthur Matveev Elisabeth Peters