LIGHT AND RADIAL VELOCITY VARIATIONS DUE TO LOW FREQUENCY OSCILLATIONS IN ROTATING STARS Jadwiga Daszy ń ska-Daszkiewicz Instytut Astronomiczny, Uniwersytet.

Slides:



Advertisements
Similar presentations
Przemysław Walczak Jadwiga Daszyńska-Daszkiewicz Uniwersytet Wrocławski Instytut Astronomiczny, Poland Wrocław,
Advertisements

CHALLENGES FOR STELLAR EVOLUTION
Corot HD A.Thoul Modeling of HD = V1449 Aql (THE only  Cephei star main target of CoRoT). Anne Thoul + Maryline Briquet, Pieter Degroote,
Precision and accuracy in stellar oscillations modeling Marc-Antoine Dupret, R. Scuflaire, M. Godart, R.-M. Ouazzani, … 11 June 2014ESTER workshop, Toulouse1.
Ch. C. Moustakidis Department of Theoretical Physics, Aristotle University of Thessaloniki, Greece Nuclear Symmetry Energy Effects on the r-mode Instabilities.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
A unified normal modes approach to dynamic tides and its application to rotating stars with realistic structure P. B. Ivanov and S. V. Chernov, PN Lebedev.
Non-axisymmetric modes of differentially rotating neutron stars Andrea Passamonti Southampton, 13 December 2007 University of Southampton In collaboration.
Nonlinear Tides in Exoplanet Host Stars (Extreme Solar Systems II) Phil ArrasUniversity of Virginia Josh BurkartU. C. Berkeley Eliot QuataertU. C. Berkeley.
Debades Bandyopadhyay Saha Institute of Nuclear Physics Kolkata, India With Debarati Chatterjee (SINP) Bulk viscosity and r-modes of neutron stars.
Physics 681: Solar Physics and Instrumentation – Lecture 20 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Astroseismology of a  -Cephei star Nick Cowan April 2006 Nick Cowan April 2006.
1 Influence of the Convective Flux Perturbation on the Stellar Oscillations: δ Scuti and γ Doradus cases A. Grigahcène, M-A. Dupret, R. Garrido, M. Gabriel.
Physics 110G Waves TOC 1 Transverse Waves in Space Transverse Waves in Time Longitudinal Waves in Space Longitudinal Waves in Time.
1 Shu-Hua Yang ( 杨书华 ) Hua Zhong Normal University The role of r-mode damping in the thermal evoltion of neutron stars.
Convection in Neutron Stars Department of Physics National Tsing Hua University G.T. Chen 2004/5/20 Convection in the surface layers of neutron stars Juan.
ASTEROSEISMOLOGY CoRoT session, January 13, 2007 Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wrocławski.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
MDI, 9/25. Orbital Motions and SAS Error Terms H. S. Hudson Sep. 29, 2003.
Pulsations and magnetic activity in the IR Rafa Garrido & Pedro J. Amado Instituto de Astrofísica de Andalucía, CSIC. Granada.
Chapter 1- General Properties of Waves Reflection Seismology Geol 4068 Elements of 3D Seismology, 2nd Edition by Christopher Liner.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Measuring sound intensity in decibel, dB Number of dB, decibel, dimensionless parameter - reference value, corresponding to threshold of sensitivity of.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Ups and downs in understanding stellar variability Wrocław
Physics 681: Solar Physics and Instrumentation – Lecture 19 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
The asteroseismic analysis of the pulsating sdB Feige 48 revisited V. Van Grootel, S. Charpinet, G. Fontaine P. Brassard, E.M. Green and P. Chayer.
Oscillations and Spins of Stars and Life Alexander Kosovichev Stanford University.
Qingkang Li Department of Astronomy Beijing Normal University The Third Workshop of SONG, April, 2010 Disks of Be Stars & Their Pulsations &
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
A Practical Introduction to Stellar Nonradial Oscillations
A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF.
Extrasolar Planets and Stellar Oscillations in K Giant Stars Notes can be downloaded from
Anthony Piro (UCSB) Advisor: Lars Bildsten Burst Oscillations and Nonradial Modes of Neutron Stars Piro & Bildsten 2004, 2005a, 2005b, 2005c (submitted)
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
N=5 l=3 m=0  = 0 =0.378 mHz  = 0.84  k =0.260mHz Mode amplitude is concentrated in equatorial plane.
R-Modes of Neutron Stars with a Superfluid Core LEE, U Astronomical Institute Tohoku University.
Modelling high-order g-mode pulsators Nice 27/05/2008 A method for modelling high-order, g-mode pulsators: The case of γ Doradus stars. A. Moya Instituto.
Rotational Kinematics Road Map of Chapter 8 Master Analogy chart Rotational Kinematics –Definition of radian, relation to degrees –Angular displacement.
Global Helioseismology NSO/LPL Summer School June 11-15, 2007
Asteroseismology A brief Introduction
Question 1 1) wavelength 2) frequency 3) period 4) amplitude 5) energy
New Surprises from the Microsatellite … aka the Humble space telescope MOST Parameters telescope diameter 15 cm launched 2003 June tracker lost 2006, but…
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
Infrasounds and Background Free Oscillations Naoki Kobayashi [1] T. Kusumi and N. Suda [2] [1] Tokyo Tech [2] Hiroshima Univ.
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,
First Attempt of Modelling of the COROT Main Target HD Workshop: "gamma Doradus stars in the COROT fields" /05/ Nice Mehdi – Pierre.
Asteroseismology with A-STEP The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541.
Simulations of Core Convection and Dynamo Activity in A-type Stars Matthew Browning Sacha Brun Juri Toomre JILA, Univ Colorado, and CEA-Saclay.
UNIQUENESS OF THE EARTH GEORGE LEBO 3 March 2012.
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
P-type pulsators on the main sequence of HR Diagram Gyöngyi Kerekes COROT-day Budapest March, 2007.
1.1 What’s electromagnetic radiation
 Introduction to Stellar Pulsations  RR Lyrae Stars and the Blazhko Effect  Part I of the Thesis Work:  Temporal Behaviour of the RR Lyrae Data 
Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.
Modeling of the sound field fluctuations due to internal waves in the shelf zone of ocean Boris G. Katsnelson Voronezh State University, Russia.
PHY238Y Lecture 5 Waves (general discussion) Transverse and longitudinal waves Properties of waves: - Amplitude and phase - Wavelength and angular number.
What’s New With The R-modes? Gregory Mendell LIGO Hanford Observatory.
Phonons Packets of sound found present in the lattice as it vibrates … but the lattice vibration cannot be heard. Unlike static lattice model , which.
Geology 5640/6640 Introduction to Seismology 30 Jan 2015 © A.R. Lowry 2015 Read for Mon 2 Feb: S&W (§2.4); Last time: The Equations of Motion.
Leuven and Nijmegen Universities p. 1 Mode identification from time series of high-resolution high signal-to-noise spectroscopy 1. Aerts et al. (1992),
From temporal spectra to stellar interiors (and back)
SUN COURSE - SLIDE SHOW 7 Today: waves.
الفصل 1: الحركة الدورانية Rotational Motion
Electromagnetic Waves
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino1,4, Maurizio De Rosa2, Francesco.
Theory of solar and stellar oscillations - I
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Presentation transcript:

LIGHT AND RADIAL VELOCITY VARIATIONS DUE TO LOW FREQUENCY OSCILLATIONS IN ROTATING STARS Jadwiga Daszy ń ska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wroc ł awski, Poland Collaborators: Wojtek Dziembowski, Alosha Pamyatnykh 22 November 2006, Porto Workshop

INSTABILITY DOMAINS IN THE MAIN SEQUENCE A. A. Pamyatnykh

for SPB pulsators often  ~ 

Slow modes in the traditional approximation not too fast rotation: (  /  crit ) 2 << 1 Cowling approximation  ~   ~  << N(r)

Separation of the angular and radial dependences in eigenfunctions s= 2  /  ( +1)   (s) Y m   (cos  )e im   (cos  ) - the Hough functions Modes with >0 propagate in the radiative zone (N>0). The radial wave number

Definition of mode degree,, for g-modes s = 2  /   0 then    ( +1)

Retrograde r-mode with g-modes properties at s>|m|+1 (Savonije 2005, Townsend 2005)

the Hough function

 ( , /  2 ) – the normalized driving rate For instability:  2  /  - should match the thermal time scale in the driving zone  /  2 – determines the r-dependence of eigenfunctions The pressure eigenfunction should be large in the driving zone like ( +1)/  2 for high order g-modes in non-rotating stars

Radial displacement Z = exp [i (m  -  t)] in co-rotating system m>0 - prograde modes m<0 - retrograde modes

Oscillating atmospheric parameters f ( , /  2 )

F x ( T eff, log g ) h x (n s, T eff, log g ) Light variations in the x passband

Pulsation velocity field

Disc-averaged radial velocity pulsational part rotational part

the rotational contribution to arises from  r,  n,  F bol,  g

An example: M=6 M , MS star logT eff = logL/L  = V rot =0, 50, 150, 250 km/s

Selected modes: g-modes with =1,2, most unstable at each (,m) r-modes, most unstable with m= -1,-2 (only for V rot ≥ 150 km/s)

Hough functions for =1 and r mode with m= -1

Amplitudes of light and radial velocity variations g-mode =1,m=0 and r-mode, m=-1 g-mode =1,m=0 and r-mode, m=-1

Amplitudes of light and radial velocity variations g-modes: =1, m= ±1 g-modes: =1, m= ±1

Hough functions for =2 and r-mode with m= -2

Prospects for mode identification

Diagnostic diagrams A Vrad /A V vs. A U /A V

fast rotation have a small effect on mode stability but a large effect on visibility there are large differences between modes in the light to radial velocity amplitude ratios rotation impairs mode visibility in the light but not in the mean radial velocity variations    Good prospects for mode identification  g-modes with the same and different m do not form regular multiplets and they have different visibility and instability properties