The retrieval of the LWC in water clouds: the comparison of Frisch and Radar-Lidar techniques O. A. Krasnov and H. W. J. Russchenberg International Research.

Slides:



Advertisements
Similar presentations
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Advertisements

Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Liquid water path from microwave radiometers.
Proposed new uses for the Ceilometer Network
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Radar/lidar observations of boundary layer clouds
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Robin Hogan Anthony Illingworth Ewan OConnor Nicolas Gaussiat Malcolm Brooks University of Reading Cloudnet products available from Chilbolton.
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Use of ground-based radar and lidar to evaluate model clouds
Robin Hogan Ewan OConnor Anthony Illingworth Nicolas Gaussiat Malcolm Brooks Cloudnet Evaluating the clouds in European forecast models.
Application of Cloudnet data in the validation of SCIAMACHY cloud height products Ping Wang Piet Stammes KNMI, De Bilt, The Netherlands CESAR Science day,
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
Stratus Cloud parameters retrieval from Doppler radar Virendra P. Ghate.
Microphysical and radiative properties of ice clouds Evaluation of the representation of clouds in models J. Delanoë and A. Protat IPSL / CETP Assessment.
The Barbados Cloud Observatory: a first outlook
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
Lee Smith Anthony Illingworth
Bredbeck Workshop, 7 – 10 July 2003 Jörg Schulz Meteorological Institute, University of Bonn Harald Czekala RPG Radiometer.
Ewan O’Connor Anthony Illingworth Comparison of observed cloud properties at the AMF COPS site with NWP models.
1 H.W.J Russchenberg 1, C.L. Brandau 1, U. Loehnert 2 and K. Ebell 2 (1) International Research Centre for Telecommunication and Radar (IRCTR), Delft Technical.
IRCTR - International Research Centre for Telecommunication and Radar ATMOS Ice crystals properties retrieval within ice and mixed-phase clouds using the.
Lidar algorithms to retrieve cloud distribution, phase and optical depth Y. Morille, M. Haeffelin, B. Cadet, V. Noel Institut Pierre Simon Laplace SYMPOSIUM.
2013 DOE/EU Retrieval Workshop, Köln “Common Algorithm Evaluation Approaches ” Session Shaocheng Xie, Kerstin Ebell, Dave Turner, and Ulrich Lohnert EU/DOE.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
BALTEX BRIDGE Cloud Campaign part 2. Guide What is BBC2? Why BBC2? Instrumentation Organisation.
Delft University of Technology 1 Do eddy dissipation rate retrievals work for precipitation profiling Doppler radar?, CESAR Science Day, June 18th, 2014.
WMO Cloud Modelling Workshop, Hamburg, 12. Juli 2004 The BALTEX BRIDGE Campaign (BBC) cases Susanne Crewell, Nicole van Lipzig, Wenchieh Yen Meteorological.
Characterization of Arctic Mixed-Phase Cloudy Boundary Layers with the Adiabatic Assumption Paquita Zuidema*, Janet Intrieri, Sergey Matrosov, Matthew.
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
CloudNet: TARA status and database H. Russchenberg, O. Krasnov Delft University of Technology – IRCTR, The Netherlands.
Chalmers (Sweden), CNRS (France), DWD (Germany), GKSS (Germany), HUT (Finland), IAP Bern (Switzerland), IRE Moscow (Russia), KNMI (The Netherlands), RAL.
Boundary layer temperature profile observations using ground-based microwave radiometers Bernhard Pospichal, ISARS 2006 Garmisch-Partenkirchen AMMA - Benin.
Cabauw Experimental Site for Atmospheric Research - CESAR - Henk Klein Baltink Atmospheric Research Section.
AGU 2002 Fall Meeting NASA Langley Research Center / Atmospheric Sciences Validation of GOES-8 Derived Cloud Properties Over the Southeastern Pacific J.
 Comparison of predicted radar reflectivity (Z) with observations, such as e.g. from the W-band ARM Cloud Radar (WACR), is an essential part of verifying.
Anthony Illingworth, Robin Hogan, Ewan O’Connor, U of Reading, UK Nicolas Gaussiat Damian Wilson, Malcolm Brooks Met Office, UK Dominique Bouniol, Alain.
BBC Workshop DeBilt, 18.–19. October 2004 Reconstruction of three dimensional cloud fields from two dimensional input datasets Klemens Barfus & Franz H.
RICO Modeling Studies Group interests RICO data in support of studies.
Water cloud retrievals O. A. Krasnov and H. W. J. Russchenberg International Research Centre for Telecommunications-transmission and Radar, Faculty of.
Lidar+Radar ice cloud remote sensing within CLOUDNET. D.Donovan, G-J Zadelhof (KNMI) and the CLOUDNET team With outside contributions from… Z. Wang (NASA/GSFC)
Robin Hogan Ewan O’Connor The Instrument Synergy/ Target Categorization product.
Radiometer Physics GmbH
1 Atmospheric profiling to better understand fog and low level cloud life cycle ARM/EU workshop on algorithms, May 2013 J. Delanoe (LATMOS), JC.
KNMI 35 GHz Cloud Radar & Cloud Classification* Henk Klein Baltink * Robin Hogan (Univ. of Reading, UK)
Introduction to cloud structure generators Victor Venema — Clemens Simmer.
Cloudnet Observing Stations Instrumentation C L Wrench Cloudnet Final Symposium – 12 October 2005.
THE PUZZLING DIFFERENCE BETWEEN RADAR OBSERVATIONS OF STRATOCUMULUS AND AIRBORNE IN SITU DATA H. Russchenberg, O. Krasnov, S. Crewell, U. Loehnert, M.
K. Pfeilsticker Institut für Umweltphysik, University of Heidelberg, Germany K. Pfeilsticker, and T. Scholl, IUP, University of Heidelberg, Germany A.
Drakkar Calibration The Drakkar microwave radiometer Calibrating Drakkar The Calibrated Data Future Work Delft, October 2004 Anne Armstrong (CETP/LMD)
Charles L Wrench RCRU Determining Cloud Liquid Water Path from Radiometer measurements at Chilbolton.
BBC/4DC meeting Leipzig Structure of microphysical cloud parameters in Cu and StCu clouds during the BBC/4D-Clouds field campaign at Cabauw.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Rob Roebeling CloudNET meeting 18 – 19 October 2004, Delft METEOSAT-8 OBSERVATIONS AND DERIVED CLOUD MICROPHYSICAL PROPERTIES.
Comparing various Lidar/Radar inversion strategies using Raman Lidar data D.Donovan, G-J Zadelhof (KNMI) Z. Wang (NASA/GSFC) D. Whiteman (NASA/GSFC)
Charles L Wrench RCRU Status of Observations at Chilbolton (CFARR) October 2004.
12 April 2013 VARSY progress meeting Robin Hogan and Nicola Pounder (University of Reading)
Nicolas Gaussiat, Anthony Illingworth and Robin Hogan Beeskow, 12 Oct 2005 Liquid Water Path from radiometers and lidar.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
© Crown copyright Met Office Cloud observations at Cardington Simon Osborne (OBR, Cardington) OBR Conference, 11 th -13 th December 2012.
Cloud Property Retrievals over the Arctic from the NASA A-Train Satellites Aqua, CloudSat and CALIPSO Douglas Spangenberg1, Patrick Minnis2, Michele L.
Radiometer Physics GmbH
Henk Klein Baltink Atmospheric Research Section
Radar-lidar synergy for the retrieval of water cloud parameters
RCA and CLIWANET results
M. De Graaf1,2, K. Sarna2, J. Brown3, E. Tenner2, M. Schenkels4, and D
Radar-lidar retrievals of water cloud parameters
Presentation transcript:

The retrieval of the LWC in water clouds: the comparison of Frisch and Radar-Lidar techniques O. A. Krasnov and H. W. J. Russchenberg International Research Centre for Telecommunications-transmission and Radar, Faculty of Information Technology and Systems, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands. Ph , Fax: : Third Progress Meeting April 2003, Reading

The Radar, Lidar, and Radiometer dataset from the Baltex Bridge Cloud (BBC) campaign August 1- September 30, 2001, Cabauw, NL Radar Reflectivity from the 95 GHz Radar MIRACLE (GKSS) Lidar Backscattering Coefficient from the CT75K Lidar Ceilometer (KNMI) Liquid Water Path from the 22 channel MICCY (UBonn) All data were presented in equal time-height grid with time interval 30 sec and height interval 30 m.

The relation between “in-situ” Effective Radius and Radar Reflectivity to Lidar Extinction Ratio for different field campaigns.

Application of the relation for the identification of the Z-LWC relationship Application of the relation for the identification of the Z-LWC relationship

Case study: August 28, 2001, Cabauw, NL, The profiles of measured variables

Case study: August 28, 2001, Cabauw, NL, The profiles of Optical Extinction and Radar-Lidar Ratio

Case study: August 28, 2001, Cabauw, NL, The Resulting Classification Map (radar and lidar data)

Case study: August 28, 2001, Cabauw, NL, Retrieval Results (classification using radar and lidar data)

Frisch’s algorithm log-normal drop size distribution concentration and distribution width are constant in the cloud From radiometer’s LWP and radar reflectivity profile:

Case study: August 28, 2001, Cabauw, NL, Retrieval Results for Frisch’s algorithm

Case study: August 28, 2001, Cabauw, NL, Histogram of Differences in Retrieval Results for the Frisch’s and the Radar-Lidar algorithm

Difference between LWC that retrieved using Frisch method and retrieved from radar-to-lidar ratio

Frisch’s fittings Log-Normal DSD N= cm -3,  = 0.8 N= cm -3,  = 0.1 Case study: August 28, 2001, Cabauw, NL, Representation results on the Z-LWC plane

Case: cloud without drizzle

Case study: September 23, 2001, Cabauw, NL, The profiles of measured variables

Case study: September 23, 2001, Cabauw, NL, The profiles of optical extinction and Radar-Liadr Ratio

Case study: September 23, 2001, Cabauw, NL, The Classification Map (Radar-Lidar, threshold -35 and -25 dB)

Case study: September 23, 2001, Cabauw, NL, The Resulting Classification Map (radar and lidar data)

Atlas Z-LWC relationship

Frisch’s fittings Case study: September 23, 2001, Cabauw, NL, The results of Frisch’s algorithm application Log-Normal DSD N= cm -3,  = 0.8 N= cm -3,  = 0.1

Conclusions The Frisch’s technique produce much more water It does not recognize the presence of in-cloud drizzle For the log-normal model Frisch’s fitting of Z-LWC relationships shows huge, non-realistic concentrations