Gustavo E. Romero IAR-CONICET Felix Aharonian’s Workshop November 7 th, 2012.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
GAMMA-RAYS FROM COLLIDING WINDS OF MASSIVE STARS Anita Reimer, Stanford University Olaf Reimer, Stanford University Martin Pohl, Iowa State University.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
1/25 Suzaku Observations of HESS sources Hironori Matsumoto (Kyoto Univ.) Hideki Uchiyama (Kyoto Univ.), Aya Bamba, Ryoko Nakamura, Takayasu Anada (ISAS/JAXA),
Theoretical Overview on High-Energy Emission in Microquasars Valentí Bosch i Ramon Universitat de Barcelona Departament d'Astronomia i Meteorologia Barcelona,
Cosmic ray acceleration in the MSH supernova remnant (RCW 86) Eveline Helder together with: Jacco Vink, Cees Bassa, Aya Bamba,
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Collective effects of stellar winds and unidentified gamma-ray sources Diego F. Torres THE MULTI-MESSENGER APPROACH TO UNIDENTIFIED GAMMA-RAY SOURCES
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
GAMMA-RAY COMPACT BINARIES* ASTROPHYSICAL SCENARIOS Félix Mirabel CEA-Saclay-France * Neutron stars & Black holes in stellar binary systems that radiate.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
「すざく」による SN1006 の観測 Suzaku observations of SN1006 Aya BAMBA (ISAS/JAXA)
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Molecular clouds and gamma rays
The TeV view of the Galactic Centre R. Terrier APC.
Prospects in space-based Gamma-Ray Astronomy Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France On behalf of the European Gamma-Ray.
MICROQUASARS: DISK-JET COUPLING
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
The X-ray Universe Sarah Bank Presented July 22, 2004.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Tobias Jogler Max-Planck Institute for Physics Taup 2007 MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf of the MAGIC.
Studying Young Stellar Objects with the EVLA
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
Search for New Stellar Sources of Gamma-Rays Josep Martí Escuela Politécnica Superior de Jaén Universidad de Jaén (UJA) Spain.
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
X-ray follow-ups of TeV unID sources using Suzaku Aya, T. Bamba (ISAS/JAXA, Japan) R. Yamazaki, K. Kohri, H. Matsumoto, H. Yamaguchi, G. Pühlhofer, S.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Chapter 11 The Interstellar Medium
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
HESS J : Very-high-energy gamma rays associated with a young stellar cluster Olaf Reimer HEPL/KIPAC at Stanford University for the H.E.S.S. collaboration.
Tobias Jogler Max – Planck Institute für Physik MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Neutrinos produced by heavy nuclei injected by the pulsars in massive binaries Marek Bartosik & W. Bednarek, A. Sierpowska Erice ISCRA 2004.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
Cornelia C. Lang University of Iowa collaborators:
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Extended X-ray object ejected from the PSR B /LS 2883 binary Jeremy Hare (George Washington University) Oleg Kargaltsev (George Washington University)
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Observation of Pulsars and Plerions with MAGIC
Star Formation.
X-Ray Binaries as Gamma-Ray Sources
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Gustavo E. Romero IAR-CONICET Felix Aharonian’s Workshop November 7 th, 2012

 Gas (Hayakawa 1952, Morrison 1958, Aharonian & Atoyan 1996).  Young, massive stars with winds collective effects (Bykov & Fleishman 1992, Romero & Torres 2003, Torres et al. 2004, Parizot et al. 2004, Bykov: yesterday, etc).  Young pulsars.  SNRs (yesterday’s talks).  Colliding wind binaries (Eichler & Usov 1993, Benaglia & Romero 2003, Pittard & Daugherty 2006).  Accreting sources (Paredes, Mirabel, Bosch-Ramon – this workshop).  FORMING MASSIVE STARS.  RUNAWAY MASSIVE STARS.

Massive stars are formed in massive and dense cores of giant molecular clouds. The cores are the result of the gravitational fragmentation of the cloud The mechanism of massive star formation is still matter of debate. There are two main different scenarios: accretion and coalescence.

Herbig-Haro objects HH49-50

Martí, Rodriguez & Reipurth (1993)

B = 0.2 mG, Carrasco-González, Rodríguez et al Polarization in the jets

The whole source (protostar + jets) is embedded in the molecular cloud Araudo, Romero, Bosch-Ramon & Paredes 2007, A&A 476, 1289

a=100 Bosch Ramon et al. (2010), n cloud = 10 3 /cm 3.

VLA Rodríguez et al. (2005) Southern lobe: S=cte n a, a~ -0.6 d=2.9 kpc B~10 -3 G V s ~1000 km/s Clear non- thermal emission

Araudo, Romero, Bosch-Ramon & Paredes 2007, A&A 476, 1289

Araudo et al. (2007)

3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red) Westerlund 2/ RCW 49

Aharonian, F.A., et al., 2006 Westerlund 2/ RCW 49

HESS Collaboration

Westerlund 2/ RCW 49 PSR J

Westerlund 2/ RCW 49 Expected size of the PWN Size of HESS J Additional contributions? HESS Coll. K&C 1984

RCW 49 / Westerlund 2 Benaglia et al. 2012

Stellar bow shocks Arc-shaped features of piled-up material Same direction as stellar velocity Winds confined by ISM ram pressure Distance to star by momentum balance Radiation from shocked gas heats swept dust Dust re-radiates as MIR and FIR excess

E-BOSS v.1 28 cands (out of 283 OB runaway stars known) Peri, Benaglia, et al. 2012, A&A

Modeling bow-schocks and their emission Relativistic particles are accelerated at the reverse adiabatic shock in the stellar wind

Modeling bow-schocks and their emission

del Valle & Romero In prep. These p can power the extended source

del Valle & Romero 2012, A&A Spectral energy distributions for O4I and O9I stars

HESS Coll.

See also poster by Martí et al. on Monoceros

Absorbed X-ray power law ~ -2.5

WISE keV EPIC map Energy map

VLA + MSX images of BD+43 o 3654 C band L band Benaglia, Romero, et al 2010, A&A

Computed BS & WISE image SED and sensitivities del Valle & Romero 2012, A&A

Conclusions Conclusions * Protostars in SFRs can be gamma-ray sources when embedded in the original molecular core. * The typical luminosities are ~ erg/s at E>100 MeV. * Runaway massive stars can produce relativistic particles in their bowshocks, and local (IC) and difusse (pp) gamma-ray emission. * Some nearby runaway O stars can be detected in gamma-rays by Fermi and in the future by CTA. Gamma-ray astronomy can open a new window to the study of massive star forming processes.

Thanks! What a world ! “Relaxed gamma-ray astronomy team”

 v j ~ 700 km/s  n ~ 1000 cm -3  R HH ~ cm  D ~ 1.7 kpc  L X ~ erg/s  B eq ~ 5 mG  E max, p ~ eV - E max, e ~ E max, p /12 See Martí et al. (1993) and Pravdo et al. (2004) for details on the source

Martí, Rodriguez & Reipurth (1993)

Number of stars vs. Spatial velocity Tetzlaff Km/s # Peri, Benaglia, et al. 2012, A&A

detected BS GC Peri, Benaglia, et al. 2012, A&A

Benaglia et al. 2012

Absorption

t pp ~ s >> t esc ~ s t Bremsstr ~ s t acc ~ η E/qBc, where η =(8/3)(v s /c) 2 t esc = t acc  eV (for protons)

IRAS bow shock candidates (Noriega-C. et al. 1997) Comerón & Pasquali 2007: o Bow shock at MSX-D, E bands o Runaway from Cyg OB2, 1.4 kpc o O4 If ; 70 M o ; 1.6 Myr; [v w = 3200 km/s] Kobulnicky et al. 2010: o v ~ 80km/s, dM/dt ~ 2 x M o /yr Ambient density: 6 to 100 cm -3 A non- thermal emitter?

D-band image (14.65  m)

L-band C-band Benaglia, Romero, et al 2010, A&A

Is all emnission coming from the BOW SHOCK? 5’ ~ 2pc Benaglia, Romero, et al 2010, A&A

Spectral index map  noise S( ) ~ k  s/n (cont) ≥ 4 s/n (  ) ≥ ≤  ≤ Benaglia, Romero, et al 2010, A&A

Ee max ~1 TeV