Libsvm-2.6使用介绍 quietsea@bbs.hit.edu.cn.

Slides:



Advertisements
Similar presentations
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
Advertisements

概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
学习方式测量表. 测试方式 对于下列的问题做出 “ 是 ” 或者 “ 否 ” 的回答 填表说明 这是一份学习方式测量表,共 16 个 问题。请你认真完成,然后对照后面 对测验结果做出的解释,检查自己的 学习方式属于什么类型。
数据挖掘实验 1 Apriori 算法编程实现. 数据挖掘实验一 (20’) 实验目的:了解关联规则在数据挖掘中的 应用,理解和掌握关联挖掘的经典算法 Apriori 算法的基本原理和执行过程并完成程 序设计。 实验内容:对给定数据集用 Apriori 算法进行 挖掘,找出其中的频繁集并生成关联规则。
一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间
计算机 在分析化学的应用 ( 简介 ) 陈辉宏. 一. 概述 信息时代的来临, 各门学科的研究方法都 有了新的发展. 计算机的介入, 为分析化学的进展提供了 一种更方便的研究方法.
第二十三讲 7.3 利用频率采样法设计 FIR 滤波器. 回顾窗函数设计法: 得到的启发:能否在频域逼近? 用什么方法逼近? 通过加窗实 现时域逼近.
2.2 结构的抗力 抗力及其不定因素 材料强度的标准值 材料强度的设计值.
第 4 章 抽象解释 内容概述 以一种独立于编程语言的方式,介绍抽象解释的 一些本质概念 – 将 “ 程序分析对语言语义是正确的 ” 这个概念公式 化 – 用 “ 加宽和收缩技术 ” 来获得最小不动点的较好的 近似,并使所需计算步数得到限制 – 用 “ 伽罗瓦连接和伽罗瓦插入 ” 来把代价较大的属 性空间用代价较小的属性空间来代替.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
Viterbi 算法 viterbi 实验要求:见 experiment3.doc – 将 TRUNC_LENGTH 取值为 4 , 8 , 16 , 32 , 64 ,看看程序运行结果会有什么变化并分析原 因。 – 将 NUMSIM 取值为 10 1 , 10.
2.1 结构上的作用 作用及作用效应 作用的分类 荷载分类及荷载代表值.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
1 4.2 自来水输送与货机装运 钢铁、煤炭、水电等生产、生活物资 从若干供应点运送到一些需求点,怎样安 排输送方案使运费最小,或者利润最大 ? 各种类型的货物装箱,由于受体积、重量 等的限制,如何相互搭配装载,使获利最 高,或者装箱数量最少 ? 本节将通过两个 例子讨论用数学规划模型解决这类问题的.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 6 章 解线性方程组的迭代法 直接法得到的解是理论上准确的,但是我们可以看得出, 它们的计算量都是 n 3 数量级,存储量为 n 2 量级,这在.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
1 第二章 误差和分析数据的处理. 2 ● 内容提要 1. 误差及其产生原因 2. 准确度与精密度 3. 有效数字及其计算规则 4. 分析数据的处理.
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
— 使用搜索引擎查找信息 我是小小 “ 导游 ” 文昌市华侨中学 王 晨 王 晨. 求助信 亲爱的朋友: 我计划两天后去海南三 亚游玩,但我从没去过海南, 也不了解三亚,请帮忙推荐 三亚一个好玩的景点,谢谢。 我计划两天后去海南三 亚游玩,但我从没去过海南, 也不了解三亚,请帮忙推荐 三亚一个好玩的景点,谢谢。
实验一: 信号、 系统及系统响应 1 、实验目的 1 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时 域采样定理的理解。 2 熟悉时域离散系统的时域特性。 3 利用卷积方法观察分析系统的时域特性。 4 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里 叶变换对连续信号、 离散信号及系统响应进行频域分析。
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 计算机如何表达函数? 1. 已知函数形态,可以存相关系数 2. 对任意函数,可以存点.
第二章 贝叶斯决策理论 3学时.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 7 章 矩阵的特征值和特征向量 很多工程计算中,会遇到特征值和特征向量的计算,如: 机械、结构或电磁振动中的固有值问题;物理学中的各种临界 值等。这些特征值的计算往往意义重大。
§2.2 一元线性回归模型的参数估计 一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计( OLS ) 三、参数估计的最大或然法 (ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
第五章 线性判别函数 6学时.
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
第 3 章 控制流分析 内容概述 – 定义一个函数式编程语言,变量可以指称函数 – 以 dynamic dispatch problem 为例(作为参数的 函数被调用时,究竟执行的是哪个函数) – 规范该控制流分析问题,定义什么是可接受的控 制流分析 – 定义可接受分析在语义模型上的可靠性 – 讨论分析算法.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
模式识别 – 成分分析与核函数 第八章 成分分析与核函数. 模式识别 – 成分分析与核函数 8.0 问题的提出 降低特征维数 : Dimension Reduction  提高泛化能力:减少模型的参数数量;  减少计算量: 主要方法: 1. 主成分分析 (PCA): Principle Component.
Chapter 4 Linear Models for Classification
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
单摆实验 秒表 读数 游标卡尺.
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
第三章 正弦交流电路.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
8.1 二元一次方程组. 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取 较好名次,想在全部 22 场比赛中得 40 分,那么这 个队胜负场数应分别是多少 ? 引 言引 言 用学过的一元一次方 程能解决此问题吗? 这可是两个 未知数呀?
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
数学广角——优化 沏茶问题.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
“ 百链 ” 云图书馆. 什么是百链云图书馆?1 百链云图书馆的实际效果?2 百链云图书馆的实现原理?3 百链云图书馆的价值?44 图书馆要做什么?55 提 纲.
小组成员:冯小懋 刘得民 周彬彬 张振 Excel 在投资理财中的应用(第二节) 第二组. 名称框的应用 应用了名称框定义后,会在引用时直接引用定义的名称。 操作:选定要定义名称的位置,选择 “ 插入 ”——“ 名称 ”——“ 指定 ” 本题中选择 “ 最左列 ” ,也可以自己定义,若是定义同一个名称可.
第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
打孔机生产效能的提高 北方民族大学: 高 义(教师) 张重威 赵 乾 杨 飞. 打孔机生产效能的提高 北方民族大学 分析 1 过孔方案 2 生产效能 3 扩展与深化 4.
SCI 数据库检索练习参考 本练习完全依照 SCI 数据库实际检索过程而 实现。 本练习完全依照 SCI 数据库实际检索过程而 实现。 练习中,选择了可以举一反三的题目,读 者可以根据题目进行另外的检索练习,如: 可将 “ 与 ” 运算检索改为 “ 或 ” 、 “ 非 ” 运算检索 等等。 练习中,选择了可以举一反三的题目,读.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Presentation transcript:

Libsvm-2.6使用介绍 quietsea@bbs.hit.edu.cn

Libsvm-2.6特点 Support multi-class classification Different SVM formulation Cross-validation for model selection Probability estimate Weighted SVM for unbalanced data Both C++ and Java sources Version 2.8 released on April fool’s day,2005

Libsvm-2.6程序结构 Kernel 类 Solver类:Generalized SMO和SVMLight algorithm 解二次规划问题 采用one-against-one 解决多类分类

Format of training and testing data file <label> <index1>:<value1> <index2>:<value2> ... +1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 -1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 +1 1:0.166667 2:1 3:-1 4:-0.433962 5:-0.383562 6:-1 7:-1 -1 1:0.458333 2:1 3:1 4:-0.358491 5:-0.374429 6:-1 7:-1

Data scaling svmscale –l -1 –u 1 –s range train.1>train.1.scale Avoid attributes in greater numeric ranges dominate those in smaller number ranges. Usually scale each attribute to [0,1] or[-1,+1]. svmscale –l -1 –u 1 –s range train.1>train.1.scale svmscale –r range test.1>test.1.scale

Svmtrain One-class:Here a hyperplane is placed such that it separates the dataset from the origin with maximal margin. The regularization parameter nu(0,1), is a user defined parameter indicating the fraction of the data that should be accepted by the description. nu-SVR: nu回归机。引入能够自动计算epsilon的参数nu。若记错误样本的个数为q ,则nu大于等于q/l,即nu是错误样本的个数所占总样本数的份额的上界;若记支持向量的个数为p,则nu小于等于p/l,即nu是支持向量的个数所占总样本数的份额的下界。首先选择参数nu和C,然后求解最优化问题。 Shrinking: 优化求解过程中是否采用shrinking. 边界支持向量BSVs(ai=C的SV)在迭代过程中ai不会变化,如果找到这些点,并把它们固定为C,可以减少QP的规模。 Probability estimate: 是否训练SVC和SVR获得概率输出 -wi 不平衡样本的加权参数

Output of training C-SVM optimization finished, #iter = 219 nu = 0.431030 :nu-SVM is a somewhat equivalent form of C-SVM where C is replaced by nu. obj = -100.877286:optimal objective value of the dual problme. rho = 0.424632 :bias term of the decision function. nSV = 132, nBSV = 107: number of the bounded support vectors Total nSV = 132

Model file svm_type c_svc kernel_type rbf gamma 0.0769231 nr_class 2:number of classes. For regression and one-class model, this number is 2. total_sv 132 rho 0.424632 label 1 -1 nr_sv 64 68: number of support vector for each class. SV

Two tools for Model Selection Easy.py: does everything automatically-from data scaling to parameter selection Grid.py: uses grid search to find the best model parameters Grid.py的输出文件 -out: 搜索过程。每个参数取值及此时精度 -png: 搜索过程等高线图

Proposed procedure Transform data to the format of Libsvm. Conduct simple scaling on the data. Consider the RBF kernel. Using the cross-validate to find the best model parameters. Using the best parameters to train the whole training set. Test

Experiments Original sets with default parameters Accuracy=9.7561% Scaled sets with default parameters Accuracy=87.8049% Scaled sets with parameter selection Accuracy=95.123% Using an automatic script Accuracy=95.122%

Remark Recommend Python 2.3 Recommend Gnuplot version 3.7.3.Vesion 3.7.1 has a bug.

References A practical guide to support vector machines classification LIBSVM: a Library for Support Vector Machines FAQ and Readme in Libsvm-2.6 http://www.csie.ntu.edu.tw/~cjlin/