-1- The Chemistry and Biology of Discodermolide Yueheng Jiang November 20, 2003.

Slides:



Advertisements
Similar presentations
Lecture 19 Homework Review Today: Apoptosis and Cancer Monday April 23rd- Cell-Cell Interactions/Tissues Thursday April 26 th -Early Development and Stem.
Advertisements

1 Marine Technology Summit November 16, Discovering and Developing New Medicines from Marine Microbes Nereus Pharmaceuticals Ken Lloyd, Ph.D. Chief.
In Vitro Micromanipulation of Microtubules Buck Wilcox Advisor: Dr. Dahong Zhang Zoology.
Amphidinolide A Isolation: 1. Kobayashi, J. et al. Tetrahedron Lett. 1986, 27, Kobayashi, J. et al. J. Nat. Prod. 1991, 54, Biological Activity:
Applying pharmacophore-based approach to improving Taxol Started with a natural product that was highly active - can other molecules with the same mechanism.
Enantioselective Total Synthesis of Ecteinascidin 743
TBA-354: TBA-354 is a promising new antituberculosis nitroimidazole derivative that was tested for pharmacokinetic profile and activity against M. tuberculosis.
Characterization of a potential new drug in cancer therapy Lab 2 Salah Farag.
Introduction: Why the Cytoskeleton Is Important What is the function of the system on the right?
Epothilone A: The Nature, Synthesis, Characterization, and Conformation of an Anti-Cancer Drug University of Notre Dame Benjamin L. Hechler Thursday, April.
--- Dead Ends and Detours Supervisors: Prof. Zhen Yang & Jiahua Chen Reporter: Weiwu Ren The Journey of Azadirachtin.
THE IN VITRO EFFECTS OF BRYOSTATIN-1 IN CONJUNCTION WITH TEMOZOLOMIDE ON U87MG HUMAN GLIOBLASTOMA MULTIFORME CELLS Stefani Fults, BA & Jeffrey P. Thompson,
SEA URCHIN EMBRYO - A PROMISING MODEL IN SCREENING FOR TUBULIN DESTABILIZING ACTIVITY.
Molecular things you want Molecular things you have ? chemists.
New insights into the mechanisms of action of microtubule targeting agents that are effective against metastatic breast cancer Susan L. Mooberry, Ph.D.
 How effective is taxol  Is there any other alternative  What is the chemical structure of taxol  What the iupac name for taxol.
Dimère alpha-beta tubuline.
Lactacystin: An Inhibitor in the Ubiquitin Proteasome Pathway Ami Jun-Yee Chin February 17, 2005.
Synthesis of Lamellarin D A Novel Potent Inhibitor of DNA Topoisomerase I Wenhui Hao March 16 th, 2006.
Co-supervisor: Prof Richard Lock
Dr. Ziad W Jaradat Cancer Stem Cells. Recently biologically distinct and relatively rare populations of tumor-initiating cells have been identified in.
Microtubules. Basic Structure   -Tubulin has a bound GTP, that does not hydrolyze.   -Tubulin may have bound GTP or GDP. An    -tubulin heterodimer.
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Jennifer M. Finefield Robert M. Williams, Advisor Colorado State University December 6, 2011 Selective HDAC Inhibitor Novel Drug Delivery Method Biosynthetic.
Christian R. Goldsmith Auburn University Department of Chemistry and Biochemistry.
1 BE : An Inhibitor of DNA –Topoisomerase II Indira Thapa November 24, 2005.
Optimization of Partial Hydrogenation Parameters Envisaged Flow Synthesis of 1 Z-Selective semi-hydrogenation of alkynes under continuous flow as part.
New Tools to Study and Perturb the Glycocalyx Thomas Boltje Institute for Molecules and Materials Radboud University The Netherlands Glycobiology 2015.
Total Synthesis of (+)-Discodermolide CHEM635 Kelsey Roberts Group B February 19, 2013 Patterson, I*; Florence, G. J.; Gerlach, K.; Scott, J. P. Agnew.
Ion specific effects in bundling and depolymerization of taxol-stabilized microtubules (MTs) Cyrus R. Safinya, University of California-Santa, DMR
Alcohols Biological Activity Nomenclature Preparation Reactions.
20.1 Microtubule Organization and Dynamics By Katelyn Ward.
Synthesis and Biological Activity of Platensimycin
Synthesis directed towards Agelasines, Agelasimines, Asmarines and Analogs; Bioactive Marine Natural Products Lise-Lotte Gundersen Department of Chemistry,
Litterature Meeting Enantioselective Total Synthesis of Avrainvillamide and Stephacidins A and B Aspergillus ochraceus.
Kang Hyun Jung. Introduction Leucascandrolide A (1, Scheme 1) was isolated in 1996 from the calcareous sponge Leucascandra caveolata, collected off the.
Competition between species Communication Defense against predators Defense against pathogens Why so many biologically active compounds from invertebrates?
HDAC6 : HDAC6 is a cytoplasmic enzyme that regulates many important biological processes. : HDAC6 has recently emerged as a tubulin deacetylase that has.
ELECTRON CRYSTALLOGRAPHY:
Utilization of Ring Closing Metathesis in Alkaloid Synthesis I. Synthetic Studies on the Immunosuppressant FR II. Toward the Total Synthesis of Lundurines.
Peter C. Adamson, M.D. The Children’s Hospital of Philadelphia
Differential activity of synthetic Au (III) and Pt (II) diethyldithiocarbamate complexes towards the proteasome in hepatoma cell line SK-Hep1 INTRODUCTION.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Synthesis of Leucascandrolide A via a Spontaneous Macrolactolization J. Am. Chem. Soc. 2002, 124, Presented by Vijayarajan Devannah 3/19/2013.
Erik J. Sorensen B.A. in Chemistry from Syracuse University (1989)
Synthesis Making molecules you want from the ones you have.
Indoleamine 2,3-Dioxygenase Inhibitory Activity of Derivatives of Marine Alkaloid Tsitsikammamine A Dr. Eduard Dolušić Drug Design and Discovery Center.
Synthesis of Discodermolides Useful for Investigating Microtubule Binding and Stabilization Melissa G. Morris CHEM 635 February 12, 2013 Hung, D. T.; Nerenberg,
Dr. Lamia Wagdy Mohamed Associate Professor of Pharmaceutical Organic Chemistry Faculty of Pharmacy- Cairo University.
Activity Enhancement of the Synthetic Syrbactin Proteasome Inhibitor Hybrid and Biological Evaluation in Tumor Cells Crystal R. Archer, Michael Groll,
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
A Metathesis Based Approach to the Synthesis of Aromatic Heterocycles Lisa P. Fishlock, Timothy J. Donohoe and Panayiotis A. Procopiou ‡ Chemistry Research.
Enantioselective Total Synthesis of Plectosphaeroic acid B J. Am. Chem. Soc. 2013, 133, 6549−6552 Salman Y. Jabri and Larry E. Overman* Speaker: 古宜加.
Dr. George Geromichalos, Ph.D.
Combined effect of charged particles irradiation and anticancer drugs in cultured tumor cells.(RDH_IRPT WP2; INFN_Milano, CNAO and Istituto Tumori) The.
Zhengren Xu, Qian Wang, and Jieping Zhu*
Special Topic Presentation: Synthesis of Bis-piperidine Alkaloids
Chemical Genetic Modifier Screens
Biological synthesis reactions within cells ( in vivo) produce only one enantiomeric form. However, when drugs are produced by synthetic processes.
Envisaged Flow Synthesis of (1)
N. Ueberschaar, Dr. H. -M. Dahse, T. Bretschneider, Prof. Dr. C
Wavelength Tunability
ENVISAGED CONTINUOUS FLOW SYNTHESIS OF COMBRETASTATIN A-4
Paper Introduction Kazuya Matsuo.
Envisaged Flow Synthesis of 1
Total Synthesis of Epothilone A: The Olefin Metathesis Approach
Tuning microtubule dynamics: synthesis of bifunctional drugs targeting tubulins Microtubule-associated proteins (MAPs) regulate growth or shrinkage of.
D7 Taxol Essential idea Chiral auxiliaries allow the production of individual enantiomers of chiral molecules.
Presentation transcript:

-1- The Chemistry and Biology of Discodermolide Yueheng Jiang November 20, 2003

-2-  Discovery and Biological Activity  Total Syntheses  Structure-Activity Relationships (SAR) Outline

-3- Discovery  Isolated by Gunasekera and co-workers in 1990 from the Caribbean deep-sea sponge (Discodermia dissoluta).  0.002% w/w isolation yield (7 mg/434 g of sponge).  Found initially to have immunosuppressive and antifungal activities.  Further revealed to be a potent microtubule stabilizer. Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J. Org. Chem. 1991, 56, Longley, R. E.; Caddigan, D.; Harmody, D.; Gunasekera, M.; Gunasekera, S. P.; Transplantation 1991, 52, 650. ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35, 243.

-4- Microtubule-stabilizing agents

-5- Cytotoxicity  Cytotoxic over a variety of cell lines (IC nM)  More potent than Taxol  Competitively inhibits the binding of Taxol to tubulin  Active against multi-drug resistant (MDR) and Taxol- resistant (Pgp mediated MDR) cell lines ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35, 243. Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R. E.; Day, B. W.; Hamel, E.; Mol. Pharmacol. 1997, 52, 613.

-6- Mechanism of action  Promote tubulin polymerization in vitro  Stabilize microtubules against depolymerization  Interfere with Taxol-binding to microtubules  Induce microtubule bundles in cells Consequences: Interfere with proper formation of mitotic spindle Cause arrest of cell cycle Cell death by apoptosis

-7- Dynamic Equilibria of Tubulin-Microtubules Taxol or Discodermolide Taxol or Discodermolide Taxol or Discodermolide Heterodimer FormationInitiationPolymerzation/Elongation α-tubulin ~50 kD β-tubulin ~50 kD K D = (α.β)(α.β) Nucleation center Stabilized Nucleation centers 5 nm (+) End (more grown) (-) End (less grown) Microtubule Stabilized microtubules Map's Mg 2+ ; GTP Ca 2+ ; 0 o C Nicolaou, K. C.; Roshangar, F.; Vourlounis, D. Angew. Chem. Int. Ed., 1998, 37, 2014.

-8- Microtubule Bundling Influence of discodermolide on a transformed mouse fibroblast. Discodermolide induces microtubule bundling (tubulin appears green), which is clearly seen in the pseudopodia and near the nucleus (appears blue). As a result of this microtubule bundling, the cell is undergoing apoptosis and fragmentation of the nucleus can be seen. Sasse, F. Current Biology, 2000, 10, R469.

-9- Unique Activities  Discodermolide could not substitute for Taxol in a Taxol-resistant cell line (A549-T12) that requires low concentrations of Taxol for normal growth.  Exhibits synergistic effects with Taxol in several cultured cell lines (not observed with Taxol/epothilones or Taxol/eleutherobin). Martello, L. A.; McDaid, H. M.; Regl, D. L.; Yang, C. H.; Ment, D. T.; Pettus, R. R.; Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith, A. B. III; Horwitz, S. B. Clin. Cancer Res. 2000, 6, Giannakakou, P.; Fojo, T. Clin. Cancer Res. 2000, 6, 1613.

-10- Potential Candidate for Cancer Chemotherapy  Novel structure  Greater or comparable efficacy to Taxol  Poor substrate for P-glycoprotein (Pgp).  Synergistic effect in combination with Taxol  Greater water solubility (100-fold > Taxol) Entered Phase I clinical trials in 2002 as a chemotherapeutic agent for use against solid tumors. Myles, D. C. Annual Reports in Med. Chem., 2002, 37, 125.

-11- Total Synthesis of Discodermolide ! (-)-Discodermolide (+)-Discodermolide S. L. Schreiber (1993) S. L. Schreiber (1996) A. B. Smith (1995) J. A. Marshall (1998) D. C. Myles (1997) A. B. Smith (1999, 2003) I. Paterson (2000, 2002) Novartis (2003) D. C. Myles (2003)  Taxol (semi-synthesis)  Epothilone (fermentation)  Discodermolide ( ???)

-12- Selected Total Synthesis of (+)-Discodermolide Schreiber 1 st total synthesis of (+/-)-discodermolide established absolute configuration Smith Delivered ~1 g of (+)-discodermolide (2 nd generation) Paterson Novel approaches Novartis Meet supply needs for clinical studies by total synthesis

-13- Structure and conformation of (+) discodermolide X-ray structure of discodermolide; hydrogen atoms omitted for clarity Paterson, I.; Florence, G. J. Eur. J. Org. Chem., 2003, 2193.

-14- General Features

-15- Strategy by Scheiber

-16- Strategy by Smith 2 nd Generation

-17- Strategy by Paterson 1 st generation

-18- Synthesis of Stereotriad by Schreiber Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348.

-19- Synthesis of stereotriad by Smith Smith, A. B. III; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, Smith, A. B. III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun. 1981, 1240.

-20- Synthesis of stereotriad by Paterson Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P. Angew. Chem. Int. Ed. 2000, 39, 377. Paterson, I.; Arnott, E. A. Tetrohedron Lett. 1998, 39, Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639.

-21- Synthesis of trisubstituted (Z)-alkene Schreiber Smith Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, Chen, J.; Wang, T.; Zhao, K. Tetrahedron Lett. 1994, 35, 2827.

-22- Synthesis of trisubstituted (Z)-alkene Paterson Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483.

-23- Synthesis of terminal (Z)-diene Schreiber Smith 1. Stock, G.; Zhao, K. Tetrahedron Lett. 1989, 30, Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. Tetrahedron 1987, 43, 723.

-24- Synthesis of terminal (Z)-diene Paterson Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, Aicher, T. D.; Kishi, Y. Tetrahedron Lett. 1987, 28, Ager, D. Org. React., 1990, 38, 1.

-25- Fragment coupling Schreiber Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, Aicher, T. D.; Kishi, Y. Tetrahedron Lett. 1987, 28, 3463.

-26- Fragment coupling Smith

-27- Fragment coupling Paterson Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Tetrahedron, 1990, 46, Mulzer, J.; Berger, M. J. Am Chem. Soc. 1999, 121, 8393.

-28- Improvement Smith Smith, A.B. III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 2003, 5, 4405.

-29- Paterson 1 st generation Problem

-30- Paterson 2 nd Generation 100% substrate control reduced overall steps from 42 to 35

-31- Paterson 2 nd Generation Improvement Paterson, I.; Delgado, O.; Florence, G. J.; Lyothier, I.; Scott, J. P.; Sereinig, N. S. Org. Lett. 2003, 5, 35.

-32- Strategy by Novartis Francavilla, C.; Chen, W.; Kinder, F. R. Jr. Org. Lett., 2003, 5, 1233.

-33- Next Generation ??? Longest Linear Sequences StepsYield Schreiber244.3% Smith 246% Myles251.4% Marshall292.2% Paterson % Novartis21N.A. Despite considerable synthetic efforts, there continues to be a pressing demand for a more practical and scaleable total synthesis …

-34- SAR Summary Antiproliferative Potencies (IC 50, nM) Against A549 or MG63 Cells of Discodermolide (1), and Analogues 2-3e. A549MG63 Discodermolide (R = Me) 2 (R = H; 16-demethyl) n.d. 10 Acetylated analogues: 3a (3-OAc) 3.8 3b (7-OAc) 0.8 3c (3,7-OAc) 0.8 3d (3,11-OAc) 164 3e (3,17-OAc) 524 N. Choy, Y. Shin, P. Q. Nguyen, D. P. Curran, R. Balanchandran, C. Madiraju, B. W. Day, J. Med. Chem., 2003, 46, Nerenberg, J. B.; Hung, D. T.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, Gunasekera, S. P.; Longley, R. E.; Isbrucker, R. A. J. Nat. Prod. 2001, 64, 171.

-35- SAR Summary Antiproliferative Potencies (IC 50, nM) Against A549 Cells of Discodermolide (1), and Analogues 4a-4d. Martello, L. A.; LaMarche, M. J.; He, L.; Beauchamp, T. J.; Smith, A. B. III; Horwitz, S. B. Chem. Biol. 2001, 8, 843. A549 4a (14-cis, demethyl) 7.8 4b (14-trans, demethyl) 485 A549 4c (3-dehydro, R = OH) 1.8 4d (3-dehydro, R = H) 11.4

-36- Summary  Discodermolide, a marine natural product, shares the same microtubule-stabilizing mechanism as Taxol and has a promising anticancer profile.  However, the supply problem is still hampering further biological and SAR studies. To date, total synthesis is the only economical means of providing useful quantities of Discodermolide. Despite considerable synthetic efforts, there continues to be a demand for a more practical and scaleable total synthesis.

-37- Acknowledgements Prof. Stephen F. Nelsen, Prof. Steven D. Burke Brian Lucas, Andy Hawk Dr. Jian Hong, Dr. Lei Jiang Dr. Stuart Rosenblum, Dr. Michael Wong, Dr. Ron Kuang Lei Chen, Dr. Gopinadhan Anilkumar